A001800 Coefficients of Legendre polynomials.
1, 3, 30, 70, 315, 693, 12012, 25740, 109395, 230945, 1939938, 4056234, 16900975, 35102025, 1163381400, 2404321560, 9917826435, 20419054425, 167890003050, 344616322050, 1412926920405, 2893136075115, 47342226683700, 96742811049300, 395033145117975
Offset: 0
Keywords
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
- G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Eric Weisstein's World of Mathematics, Legendre Polynomial, eq. 28.
Programs
-
Magma
A001800:= func< n | (n+1)*(n+2)*Catalan(n+1)/2^(&+Intseq(n+2, 2)) >; [A001800(n): n in [0..30]]; // G. C. Greubel, Apr 25 2025
-
Maple
wt:= proc(n) local m, r; m:=n; r:=0; while m>0 do r:= r+irem(m, 2, 'm') od; r end: a:= n-> (n+1) *binomial(2*n+2, n+1)/2^wt(n+2): seq(a(n), n=0..30); # Alois P. Heinz, May 29 2013
-
Mathematica
a[n_] := (n+1)*Binomial[2*n+2, n+1]/2^DigitCount[n+2, 2, 1]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 13 2014 *)
-
PARI
a(n)=if(n<0,0,-polcoeff(pollegendre(n+2),n)*2^valuation((n\2*2)!,2))
-
SageMath
def A001800(n): return (n+1)*binomial(2*n+2,n+1)//2^sum((n+2).digits(2)) print([A001800(n) for n in range(31)]) # G. C. Greubel, Apr 25 2025
Formula
a(n) = (n+1) * C(2n+2, n+1) / 2^A000120(n+2).
Extensions
More terms from Michael Somos, Oct 25 2002