A001814 Coefficient of H_2 when expressing x^{2n} in terms of Hermite polynomials H_m.
1, 12, 180, 3360, 75600, 1995840, 60540480, 2075673600, 79394515200, 3352212864000, 154872234316800, 7771770303897600, 420970891461120000, 24481076457277440000, 1521324036987955200000, 100610229646136770560000
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- H. E. Salzer, Coefficients for expressing the first thirty powers in terms of the Hermite polynomials, Math. Comp., 3 (1948), 167-169.
- Index entries for sequences related to Hermite polynomials
Programs
-
Magma
[Factorial(2*n)/(2*Factorial(n-1)): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
-
Maple
with(combinat):for n from 1 to 16 do printf(`%d, `,n!/2*sum(binomial(2*n, n), k=1..n)) od: # Zerinvary Lajos, Mar 13 2007 a:=n->sum((count(Permutation(n*2+2),size=n+1)),j=0..n)/2: seq(a(n), n=0..15); # Zerinvary Lajos, May 03 2007 seq(1/2*mul((n+k), k=1..n), n=0..16); # Zerinvary Lajos, Sep 21 2007
-
Mathematica
Table[(2*n)!/(2*(n-1)!),{n,1,20}] (* Vincenzo Librandi, Nov 22 2011 *)
-
MuPAD
combinat::catalan(n)*binomial(n+1,2)*n! $ n = 1..16; // Zerinvary Lajos, Feb 15 2007
Formula
E.g.f.: x/(1 - 4*x)^(3/2). - corrected by Alain Goupil, Jul 28 2025
a(n) = (2*n)!/(2*(n-1)!).
(n!/2)*binomial(2*n,n)*n or n!/2*A005430. - Zerinvary Lajos, Jun 06 2006
Sum_{n>=0} a(n)*x^(2n)/(2n)! = (x^2/2)*exp(x^2). - Alain Goupil, Jul 28 2025
Extensions
More terms and new description from Christian G. Bower, Dec 18 2001
Comments