A060821
Triangle read by rows. T(n, k) are the coefficients of the Hermite polynomial of order n, for 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, -2, 0, 4, 0, -12, 0, 8, 12, 0, -48, 0, 16, 0, 120, 0, -160, 0, 32, -120, 0, 720, 0, -480, 0, 64, 0, -1680, 0, 3360, 0, -1344, 0, 128, 1680, 0, -13440, 0, 13440, 0, -3584, 0, 256, 0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512, -30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024
Offset: 0
[1], [0, 2], [ -2, 0, 4], [0, -12, 0, 8], [12, 0, -48, 0, 16], [0, 120, 0, -160, 0, 32], ... .
Thus H_0(x) = 1, H_1(x) = 2*x, H_2(x) = -2 + 4*x^2, H_3(x) = -12*x + 8*x^3, H_4(x) = 12 - 48*x^2 + 16*x^4, ...
Triangle starts:
1;
0, 2;
-2, 0, 4;
0, -12, 0, 8;
12, 0, -48, 0, 16;
0, 120, 0, -160, 0, 32;
-120, 0, 720, 0, -480, 0, 64;
0, -1680, 0, 3360, 0, -1344, 0, 128;
1680, 0, -13440, 0, 13440, 0, -3584, 0, 256;
0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512;
-30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024;
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 24, equations 24:4:1 - 24:4:8 at page 219.
- T. D. Noe, Rows n=0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 801.
- Taekyun Kim and Dae San Kim, A note on Hermite polynomials, arXiv:1602.04096 [math.NT], 2016.
- Alexander Minakov, Question about integral of product of four Hermite polynomials integrated with squared weight, arXiv:1911.03942 [math.CO], 2019.
- Wikipedia, Hermite polynomials.
- Index entries for sequences related to Hermite polynomials.
Without initial zeros, same as
A059343.
-
with(orthopoly):for n from 0 to 10 do H(n,x):od;
T := proc(n,m) if n-m >= 0 and n-m mod 2 = 0 then ((-1)^((n-m)/2))*(2^m)*n!/(m!*((n-m)/2)!) else 0 fi; end;
# Alternative:
T := proc(n,k) option remember; if k > n then 0 elif n = k then 2^n else
(T(n, k+2)*(k+2)*(k+1))/(2*(k-n)) fi end:
seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023
-
Flatten[ Table[ CoefficientList[ HermiteH[n, x], x], {n, 0, 10}]] (* Jean-François Alcover, Jan 18 2012 *)
-
for(n=0,9,v=Vec(polhermite(n));forstep(i=n+1,1,-1,print1(v[i]", "))) \\ Charles R Greathouse IV, Jun 20 2012
-
from sympy import hermite, Poly, symbols
x = symbols('x')
def a(n): return Poly(hermite(n, x), x).all_coeffs()[::-1]
for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
-
def Trow(n: int) -> list[int]:
row: list[int] = [0] * (n + 1); row[n] = 2**n
for k in range(n - 2, -1, -2):
row[k] = -(row[k + 2] * (k + 2) * (k + 1)) // (2 * (n - k))
return row # Peter Luschny, Jan 08 2023
A001879
a(n) = (2n+2)!/(n!*2^(n+1)).
Original entry on oeis.org
1, 6, 45, 420, 4725, 62370, 945945, 16216200, 310134825, 6547290750, 151242416325, 3794809718700, 102776096548125, 2988412653476250, 92854250304440625, 3070380543400170000, 107655217802968460625, 3989575718580595893750, 155815096120119939628125
Offset: 0
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77 (Problem 10, values of Bessel polynomials).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Reinis Cirpons, James East, and James D. Mitchell, Transformation representations of diagram monoids, arXiv:2411.14693 [math.RA], 2024. See pp. 3, 33.
- Selden Crary, Richard Diehl Martinez and Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ib. Integrals of Matern-correlation functions for all odd-half-integer class parameters, arXiv:1707.00705 [stat.ME], 2017, Table 1.
- Alexander Kreinin, Integer Sequences and Laplace Continued Fraction, Preprint 2016.
- J. Riordan, Notes to N. J. A. Sloane, Jul. 1968
-
[Factorial(2*n+2)/(Factorial(n)*2^(n+1)): n in [0..20]]; // Vincenzo Librandi, Nov 22 2011
-
restart: G(x):=(1-x)/(1-2*x)^(1/2): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=2..20); # Zerinvary Lajos, Apr 04 2009
-
Table[(2n+2)!/(n!2^(n+1)),{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
-
a(n)=if(n<0,0,(2*n+2)!/n!/2^(n+1))
A126804
a(n) = (2n)! / (n-1)!.
Original entry on oeis.org
2, 24, 360, 6720, 151200, 3991680, 121080960, 4151347200, 158789030400, 6704425728000, 309744468633600, 15543540607795200, 841941782922240000, 48962152914554880000, 3042648073975910400000, 201220459292273541120000, 14110584707870682071040000
Offset: 1
Jonathan R. Love (japanada11(AT)yahoo.ca), Feb 22 2007
a(5) = 151200 because five digits above 5: (6, 7, 8, 9, 10), multiplied by five equals 5*(6*7*8*9*10) = 151200.
-
[Factorial(2*n)/Factorial(n-1) : n in [1..20]]; // Wesley Ivan Hurt, Dec 14 2015
-
a:=n->sum((count(Permutation(2*n+2),size=n+1)),j=0..n): seq(a(n), n=0..15); # Zerinvary Lajos, May 03 2007
seq(mul((n+k), k=0..n), n=1..16); # Zerinvary Lajos, Sep 21 2007
with(combstruct):with(combinat) :bin := {B=Union(Z,Prod(B,B))}: seq (count([B,bin,labeled],size=n)*(n-1), n=2..17); # Zerinvary Lajos, Dec 05 2007
-
Table[Pochhammer[n, n + 1], {n, 17}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
Table[(2 n)!/(n - 1)!, {n, 20}] (* Wesley Ivan Hurt, Dec 14 2015 *)
-
a(n) = prod(k=n, 2*n, k); \\ Michel Marcus, Dec 15 2015
-
x='x+O('x^99); Vec(serlaplace(2*x/(1-4*x)^(3/2))) \\ Altug Alkan, Mar 11 2018
A067147
Triangle of coefficients for expressing x^n in terms of Hermite polynomials.
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 12, 0, 12, 0, 1, 0, 60, 0, 20, 0, 1, 120, 0, 180, 0, 30, 0, 1, 0, 840, 0, 420, 0, 42, 0, 1, 1680, 0, 3360, 0, 840, 0, 56, 0, 1, 0, 15120, 0, 10080, 0, 1512, 0, 72, 0, 1, 30240, 0, 75600, 0, 25200, 0, 2520, 0, 90, 0, 1
Offset: 0
Triangle begins with:
1;
0, 1;
2, 0, 1;
0, 6, 0, 1;
12, 0, 12, 0, 1;
0, 60, 0, 20, 0, 1;
120, 0, 180, 0, 30, 0, 1;
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801. (Table 22.12)
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Griffin, K. Ono, L. Rolen, and D. Zagier, Jensen polynomials for the Riemann zeta function and other sequences, arXiv:1902.07321 [math.NT], 2019.
- Index entries for sequences related to Hermite polynomials
-
[[Round(Factorial(n)*(1+(-1)^(n+k))/(2*Factorial(k)*Gamma((n-k+2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jun 09 2018
-
T := proc(n, k) (n - k)/2; `if`(%::integer, (n!/k!)/%!, 0) end:
for n from 0 to 11 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jan 05 2021
-
Table[n!*(1+(-1)^(n+k))/(2*k!*Gamma[(n-k+2)/2]), {n,0,20}, {k,0,n}]// Flatten (* G. C. Greubel, Jun 09 2018 *)
-
T(n, k) = round(n!*(1+(-1)^(n+k))/(2*k! *gamma((n-k+2)/2)))
for(n=0,20, for(k=0,n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jun 09 2018
-
{T(n,k) = if(k<0 || nMichael Somos, Jan 15 2020 */
A119836
Bi-diagonal inverse of [k<=n]*n!/(2k)!.
Original entry on oeis.org
1, -2, 2, 0, -24, 12, 0, 0, -360, 120, 0, 0, 0, -6720, 1680, 0, 0, 0, 0, -151200, 30240, 0, 0, 0, 0, 0, -3991680, 665280, 0, 0, 0, 0, 0, 0, -121080960, 17297280, 0, 0, 0, 0, 0, 0, 0, -4151347200, 518918400, 0, 0, 0, 0, 0, 0, 0, 0, -158789030400, 17643225600, 0, 0, 0, 0, 0, 0, 0, 0, 0, -6704425728000, 670442572800
Offset: 0
Triangle begins
1,
-2, 2,
0, -24, 12,
0, 0, -360, 120,
0, 0, 0, -6720, 1680,
0, 0, 0, 0, -151200, 30240,
0, 0, 0, 0, 0, -3991680, 665280,
0, 0, 0, 0, 0, 0, -121080960, 17297280,
0, 0, 0, 0, 0, 0, 0, -4151347200, 518918400,
0, 0, 0, 0, 0, 0, 0, 0, -158789030400, 17643225600,
0, 0, 0, 0, 0, 0, 0, 0, 0, -6704425728000, 670442572800
A119837
a(n)=(2n)!/n!-(2n)!/(n-1)!.
Original entry on oeis.org
1, 0, -12, -240, -5040, -120960, -3326400, -103783680, -3632428800, -141145804800, -6033983155200, -281585880576000, -14248245557145600, -777177030389760000, -45464856277800960000, -2839804869044183040000, -188644180586506444800000
Offset: 0
Showing 1-6 of 6 results.
Comments