A001498
Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0
The triangle a(n, k), n >= 0, k = 0..n, begins:
1
1 1
1 3 3
1 6 15 15
1 10 45 105 105
1 15 105 420 945 945
1 21 210 1260 4725 10395 10395
1 28 378 3150 17325 62370 135135 135135
1 36 630 6930 51975 270270 945945 2027025 2027025
1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425
...
And the first few Bessel polynomials are:
y_0(x) = 1,
y_1(x) = x + 1,
y_2(x) = 3*x^2 + 3*x + 1,
y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1,
y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1,
y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1,
...
Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
- T. D. Noe, Rows n=0..50 of triangle, flattened
- Alexander Alldridge, Joachim Hilgert, and Martin R. Zirnbauer, Chevalley's restriction theorem for reductive symmetric superpairs, arXiv:0812.3530 [math.RT], 2008-2009; J. Alg. 323 (4) (2010) 1159-1185 doi:10.1016/j.jalgebra.2009.11.014, Remark 3.17.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- Juan Antonio Barcelo and Anthony Carbery, On the magnitudes of compact sets in Euclidean spaces, arXiv preprint arXiv:1507.02502 [math.MG], 2015.
- François Bergeron, Philippe Flajolet, and Bruno Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48.
- Alexander W. Boldyreff, Decomposition of Rational Fractions into Partial Fractions, Nat. Math. Mag. 17 (6) (1943), 261-267; coefficients (m)N(r).
- Alexander Burstein and Toufik Mansour, Words restricted by patterns with at most 2 distinct letters, arXiv:math/0110056 [math.CO], 2001.
- Roudy El Haddad, Repeated Integration and Explicit Formula for the n-th Integral of x^m*(ln x)^m', arXiv:2102.11723 [math.GM], 2021.
- Andrew Francis and Michael Hendriksen, Counting spinal phylogenetic networks, arXiv:2502.14223 [q-bio.PE], 2025. See p. 9.
- Emil Grosswald, Bessel Polynomials: Recurrence Relations, Lecture Notes Math. vol. 698, 1978, p. 18.
- Cameron Jakub and Mihai Nica, Depth Degeneracy in Neural Networks: Vanishing Angles in Fully Connected ReLU Networks on Initialization, arXiv:2302.09712 [stat.ML], 2023.
- Taekyun Kim, and Dae San Kim, Identities involving Bessel polynomials arising from linear differential equations, arXiv:1602.04106 [math.NT], 2016.
- H. L. Krall and Orrin Frink, A new class of orthogonal polynomials, Trans. Amer. Math. Soc. 65, 100-115, 1949.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, First ten rows.
- B. Leclerc, Powers of staircase Schur functions and symmetric analogues of Bessel polynomials, Discrete Math., 153 (1996), 213-227.
- Shi-Mei Ma, Toufik Mansour, and Matthias Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv preprint arXiv:1308.0169 [math.CO], 2013.
- Shi-Mei Ma, Toufik Mansour, Jean Yeh, and Yeong-Nan Yeh, Normal ordered grammars, arXiv:2404.15119 [math.CO], 2024. See p. 11.
- Guillermo Navas-Palencia, On the computation of the cumulative distribution function of the Normal Inverse Gaussian distribution, arXiv:2502.16015 [math.NA], 2025. See p. 25.
- Andrew Elvey Price and Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- John Riordan, Notes to N. J. A. Sloane, Jul. 1968
- Florian Stober, Average case considerations for MergeInsertion, Master's Thesis, University of Stuttgart, Institute of Formal Methods in Computer Science, 2018.
- Florian Stober and Armin Weiß, On the Average Case of MergeInsertion, arXiv:1905.09656 [cs.DS], 2019.
- Laszlo A. Székely, Pál L. Erdős, and M. A. Steel, The combinatorics of evolutionary trees, Séminaire Lotharingien de Combinatoire, B28e (1992), 15 pp.
- Juan G. Triana, Bessel polynomials by context-free grammars (Polinomios de Bessel mediante gramáticas independientes del contexto), Bistua, Univ. de Pamplona (Colombia, 2024) Vol 22, No. 2. See p. 3.
- Jonas Wahl, Traces on diagram algebras II: Centralizer algebras of easy groups and new variations of the Young graph, arXiv:2009.08181 [math.RT], 2020.
- Eric Weisstein's World of Mathematics, Modified Spherical Bessel Function of the Second Kind
- Index entries for sequences related to Bessel functions or polynomials
-
a001498 n k = a001498_tabl !! n !! k
a001498_row n = a001498_tabl !! n
a001498_tabl = map reverse a001497_tabl
-- Reinhard Zumkeller, Jul 11 2014
-
/* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
-
Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials
Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials
bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end;
# Alternative:
T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k:
for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end:
for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Oct 02 2023
-
max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
-
{T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
-
A001497_ser(N,t='t) = {
my(x='x+O('x^(N+2)));
serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x));
};
concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
A163932
Triangle related to the asymptotic expansion of E(x,m=3,n).
Original entry on oeis.org
1, 3, 3, 11, 18, 6, 50, 105, 60, 10, 274, 675, 510, 150, 15, 1764, 4872, 4410, 1750, 315, 21, 13068, 39396, 40614, 19600, 4830, 588, 28, 109584, 354372, 403704, 224490, 68040, 11466, 1008, 36, 1026576, 3518100, 4342080, 2693250, 949095, 198450
Offset: 1
The first few rows of the triangle are:
[1]
[3, 3]
[11, 18, 6]
[50, 105, 60, 10]
-
nmax:=8; with(combinat): for n1 from 1 to nmax do for m from 1 to n1 do a(n1, m) := (-1)^(n1+m)*binomial(m+1, 2)*stirling1(n1+1, m+1) od: od: seq(seq(a(n1,m), m=1..n1), n1=1..nmax);
# End program 1
with(combinat): imax:=6; EA:=proc(x, m, n) local E, i; E := 0: for i from m-1 to imax+1 do E := E + sum((-1)^(m+k1+1)*binomial(k1, m-1)*n^(k1-m+1)* stirling1(i, k1), k1=m-1..i)/x^(i-m+1) od: E := exp(-x)/x^(m)*E: return(E); end: EA(x, 3, n);
# End program 2
-
a[n_, m_] /; n >= 1 && 1 <= m <= n = (-1)^(n+m)*Binomial[m+1, 2] * StirlingS1[n+1, m+1]; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 42]] (* Jean-François Alcover, Jun 01 2011, after formula *)
-
for(n=1,10, for(m=1,n, print1((-1)^(n+m)*binomial(m+1,2) *stirling(n+1,m+1,1), ", "))) \\ G. C. Greubel, Aug 08 2017
A163936
Triangle related to the o.g.f.s. of the right-hand columns of A130534 (E(x,m=1,n)).
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 6, 8, 1, 0, 24, 58, 22, 1, 0, 120, 444, 328, 52, 1, 0, 720, 3708, 4400, 1452, 114, 1, 0, 5040, 33984, 58140, 32120, 5610, 240, 1, 0, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0, 362880, 3733920, 11026296, 12440064, 5765500, 1062500
Offset: 1
Triangle starts:
[ 1] 1;
[ 2] 1, 0;
[ 3] 2, 1, 0;
[ 4] 6, 8, 1, 0;
[ 5] 24, 58, 22, 1, 0;
[ 6] 120, 444, 328, 52, 1, 0;
[ 7] 720, 3708, 4400, 1452, 114, 1, 0;
[ 8] 5040, 33984, 58140, 32120, 5610, 240, 1, 0;
[ 9] 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0;
The first few W1(z,p) polynomials are
W1(z,p=1) = 1/(1-z);
W1(z,p=2) = (1 + 0*z)/(1-z)^3;
W1(z,p=3) = (2 + 1*z + 0*z^2)/(1-z)^5;
W1(z,p=4) = (6 + 8*z + 1*z^2 + 0*z^3)/(1-z)^7.
-
with(combinat): a := proc(n, m): add((-1)^(n+k+1)*binomial(2*n-1, k)*stirling1(m+n-k-1, m-k), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..9); # Johannes W. Meijer, revised Nov 27 2012
-
Table[Sum[(-1)^(n + k + 1)*Binomial[2*n - 1, k]*StirlingS1[m + n - k - 1, m - k], {k, 0, m - 1}], {n, 1, 10}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)
-
for(n=1,10, for(m=1,n, print1(sum(k=0,m-1,(-1)^(n+k+1)* binomial(2*n-1,k)*stirling(m+n-k-1,m-k, 1)), ", "))) \\ G. C. Greubel, Aug 13 2017
-
\\ assuming offset = 0:
E2poly(n,x) = if(n == 0, 1, x*(x-1)^(2*n)*deriv((1-x)^(1-2*n)*E2poly(n-1,x)));
{ for(n = 0, 9, print(Vec(E2poly(n,x)))) } \\ Peter Luschny, Feb 12 2021
A001814
Coefficient of H_2 when expressing x^{2n} in terms of Hermite polynomials H_m.
Original entry on oeis.org
1, 12, 180, 3360, 75600, 1995840, 60540480, 2075673600, 79394515200, 3352212864000, 154872234316800, 7771770303897600, 420970891461120000, 24481076457277440000, 1521324036987955200000, 100610229646136770560000
Offset: 1
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 801.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- H. E. Salzer, Coefficients for expressing the first thirty powers in terms of the Hermite polynomials, Math. Comp., 3 (1948), 167-169.
- Index entries for sequences related to Hermite polynomials
-
[Factorial(2*n)/(2*Factorial(n-1)): n in [1..20]]; // Vincenzo Librandi, Nov 22 2011
-
with(combinat):for n from 1 to 16 do printf(`%d, `,n!/2*sum(binomial(2*n, n), k=1..n)) od: # Zerinvary Lajos, Mar 13 2007
a:=n->sum((count(Permutation(n*2+2),size=n+1)),j=0..n)/2: seq(a(n), n=0..15); # Zerinvary Lajos, May 03 2007
seq(1/2*mul((n+k), k=1..n), n=0..16); # Zerinvary Lajos, Sep 21 2007
-
Table[(2*n)!/(2*(n-1)!),{n,1,20}] (* Vincenzo Librandi, Nov 22 2011 *)
-
combinat::catalan(n)*binomial(n+1,2)*n! $ n = 1..16; // Zerinvary Lajos, Feb 15 2007
A163938
Triangle related to the o.g.f.s. of the right hand columns of A163932 (E(x, m=3, n)).
Original entry on oeis.org
1, 3, 3, 11, 28, 6, 50, 225, 135, 10, 274, 1858, 2092, 486, 15, 1764, 16464, 29148, 13482, 1491, 21, 13068, 158352, 398640, 301220, 70485, 4152, 28, 109584, 1655172, 5552724, 6132780, 2432070, 322971, 10863, 36
Offset: 1
The first few W3(z,p) polynomials are:
W3(z,p=1) = 1/(1-z)^3
W3(z,p=2) = (3 + 3*z)/(1-z)^5
W3(z,p=3) = (11 + 28*z + 6*z^2)/(1-z)^7
W3(z,p=4) = (50 + 225*z + 135*z^2 + 10*z^3)/(1-z)^9
A000254 equals the first left hand column.
A000217 equals the first right hand column.
-
with(combinat): a := proc(n, m): add((-1)^(n+k+1)*((m-k+1)*(m-k)/2!)*binomial(2*n+1, k)*stirling1(m+n-k, m-k+1), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..8); # Johannes W. Meijer, revised Nov 27 2012
-
Table[Sum[(-1)^(n + k + 1)*Binomial[m - k + 1, 2]*Binomial[2*n + 1, k]*StirlingS1[m + n - k, m - k + 1], {k, 0, m - 1}], {n, 1, 50}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)
-
for(n=1,10, for(m=1,n, print1(sum(k=0,m-1, (-1)^(n+k+1)* binomial(m-k+1,2)*binomial(2*n+1,k) *stirling(m+n-k,m-k+1, 1)) ,", "))) \\ G. C. Greubel, Aug 13 2017
A288950
Number of relaxed compacted binary trees of right height at most one with empty initial and final sequence on level 0.
Original entry on oeis.org
1, 0, 1, 2, 15, 140, 1575, 20790, 315315, 5405400, 103378275, 2182430250, 50414138775, 1264936572900, 34258698849375, 996137551158750, 30951416768146875, 1023460181133390000, 35885072600989486875, 1329858572860198631250, 51938365373373313209375
Offset: 0
Denote by L the leaf and by o nodes. Every node has exactly two out-going edges or pointers. Internal edges are denoted by - or |. Pointers are omitted and may point to any node further right. The root is at level 0 at the very left.
The general structure is
L-o-o-o-o-o-o-o-o-o
| | | |
o o-o-o o-o o.
For n=0 the a(0)=1 solution is L.
For n=1 we have a(1)=0 because we need nodes on level 0 and level 1.
For n=2 the a(2)=1 solution is
L-o
|
o
and the pointers of the node on level 1 both point to the leaf.
For n=3 the a(3)=2 solutions have the structure
L-o
|
o-o
where the pointers of the last node have to point to the leaf, but the pointer of the next node has 2 choices: the leaf of the previous node.
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
Cf.
A000032,
A000246,
A001879,
A051577,
A177145,
A213527,
A288950,
A288952,
A288953,
A288954 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
-
terms = 21; (z + (1 - z)/3*(2 - z + (1 - 2z)^(-1/2)) + O[z]^terms // CoefficientList[#, z] &) Range[0, terms-1]! (* Jean-François Alcover, Dec 04 2018 *)
A142970
Numerators of n-th approximants of a continued fraction for Pi-3.
Original entry on oeis.org
0, 1, 6, 61, 660, 8901, 133266, 2303865, 43808040, 928665225, 21386693790, 537861526965, 14540730176700, 423407835413325, 13140639311294250, 434929825450371825, 15237733330856005200, 565064979900590948625, 22056613209702152061750, 905913636742121921038125
Offset: 0
Approximants a(n)/A001879(n) (not in lowest terms): [0/1]; [1/6]; [6/45]; [61/420]; [660/4725]; [8901/62370];..
Approximants in lowest terms: [0/1]; [1/6]; [2/15]; [61/420]; [44/315]; [989/6930]; ...
- J.-P. Delahaye, Le fascinant nombre pi, Pour la Science, Paris 1997. In German: Pi - die Story, Birkhäuser, 1999 Basel, p. 87.
- B. C. Berndt, R. L. Lamphere, and B. M. Wilson Chapter 12 of Ramanujan's second notebook: Continued fractions, Rocky Mountain Journal of Mathematics, Volume 15, Number 2 (1985), 235-310
- L. Euler, De fractionibus continuis observationes, The Euler Archive, Index Number 123, Section 67.
- Wolfdieter Lang, Approximants for Pi-3 and more
- L. J. Lange, An Elegant Continued Fraction for π, The American Mathematical Monthly, 106 (1999), 456-458.
-
I:=[1,6]; [0] cat [n le 2 select I[n] else 6*Self(n-1)+(2*n-1)^2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 20 2015
-
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==6 a[n-1] + (2 n-1)^2 a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Feb 20 2015 *)
A288952
Number of relaxed compacted binary trees of right height at most one with empty sequences between branch nodes on level 0.
Original entry on oeis.org
1, 0, 1, 2, 15, 92, 835, 8322, 99169, 1325960, 19966329, 332259290, 6070777999, 120694673748, 2594992240555, 59986047422378, 1483663965460545, 39095051587497488, 1093394763005554801, 32347902448449172530, 1009325655965539561231, 33125674098690460236620
Offset: 0
- Muniru A Asiru, Table of n, a(n) for n = 0..100
- Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers and Michael Wallner, Asymptotic Enumeration of Compacted Binary Trees, arXiv:1703.10031 [math.CO], 2017.
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017.
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
-
a := [1,0];; for n in [3..10^2] do a[n] := (n-2)*a[n-1] + (n-2)^2*a[n-2]; od; a; # Muniru A Asiru, Jan 26 2018
-
a:=proc(n) option remember: if n=0 then 1 elif n=1 then 0 elif n>=2 then (n-1)*procname(n-1)-(n-1)^2*procname(n-2) fi; end:
seq(a(n),n=0..100); # Muniru A Asiru, Jan 26 2018
-
Fold[Append[#1, (#2 - 1) Last[#1] + #1[[#2 - 1]] (#2 - 1)^2] &, {1, 0}, Range[2, 21]] (* Michael De Vlieger, Jan 28 2018 *)
A038121
E.g.f.: (1 + 15*x + (45/2)*x^2 + (5/2)*x^3)/(1 - 2*x)^(13/2).
Original entry on oeis.org
1, 28, 630, 13860, 315315, 7567560, 192972780, 5237832600, 151242416325, 4638100767300, 150738274937250, 5179915266025500, 187771928393424375, 7164221267933730000, 287080580807915895000, 12057384393932467590000
Offset: 0
-
[Factorial(2*n+6)/ (720*Factorial(n)*2^n): n in [0..20]]; // Vincenzo Librandi, Nov 22 2011
-
Table[(2n+6)!/(6!*n!*2^n),{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
-
x='x+O('x^50); Vec(serlaplace((1+15*x+45/2*x^2+5/2*x^3)/(1-2*x)^(13/2))) \\ G. C. Greubel, Aug 13 2017
A130411
Numerator of partial sums of a series for 3*(Pi-3).
Original entry on oeis.org
1, 2, 61, 44, 989, 6346, 51197, 36056, 4127401, 2057402, 189721879, 236723324, 1422382919, 20600649518, 10227626700773, 638723926928, 1278290544991, 23635180313246, 94585786464329, 969106771716436, 83372817133541471
Offset: 1
Rationals r(n), n>=1: [1/2, 2/5, 61/140, 44/105, 989/2310, 6346/15015, 51197/120120, ...].
Rationals s(n)=r(n)/12, n>=1: [1/24, 1/30, 61/1680, 11/315, 989/27720, 3173/90090, 51197/1441440, ...].
- W. Lang, Rationals and limit.
- Ranjan Roy, The Discovery of the Series Formula for Pi by Leibniz, Gregory and Nilakantha, Math. Magazine 63 (1990), 291-306. Reprinted in: Pi: A Source Book, eds. L. Berggren, et al., Springer, New York, 1997, pp. 92-107.
Showing 1-10 of 21 results.
Comments