A001817 G.f.: Sum_{n>0} x^n/(1-x^(3n)) = Sum_{n>=0} x^(3n+1)/(1-x^(3n+1)).
1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 3, 2, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 2, 1, 3, 3, 3, 1, 4, 1, 1, 2, 4, 2, 2, 1, 3, 2, 2, 2, 4, 2, 2, 2, 3, 1, 4, 1, 2, 2, 2, 2, 4, 2, 2, 2, 5, 1, 2, 1, 4, 2, 2, 1, 4, 1, 2, 4, 3, 2, 2, 2, 3, 2, 3, 1, 5, 1, 2, 2, 4, 2
Offset: 1
Examples
x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + 2*x^7 + 2*x^8 + x^9 + ...
References
- Bruce C. Berndt, On a certain theta-function in a letter of Ramanujan from Fitzroy House, Ganita 43 (1992), 33-43.
Links
- Nick Hobson, Table of n, a(n) for n = 1..10000
- P. G. Dirichlet, Recherches sur diverses applications de l'analyse infinitésimale à la théorie des nombres, J. Reine Angew. Math. 21 (1840), 1-12.
- Michael Gilleland, Some Self-Similar Integer Sequences.
- R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41.
Programs
-
Haskell
a001817 n = length [d | d <- [1,4..n], mod n d == 0] -- Reinhard Zumkeller, Nov 26 2011
-
Maple
A001817 := proc(n) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,3) = 1 then a := a+1 ; end if ; end do: a ; end proc: seq(A001817(n),n=1..100) ; # R. J. Mathar, Sep 25 2017
-
Mathematica
a[n_] := DivisorSum[n, Boole[Mod[#, 3] == 1]&]; Array[a, 100] (* Jean-François Alcover, Dec 01 2015 *)
-
PARI
a(n)=if(n<1,0,sumdiv(n,d,d%3==1))
Formula
Moebius transform is period 3 sequence [1, 0, 0, ...]. - Michael Somos, Sep 20 2005
G.f.: Sum_{k>0} x^(3k-2)/(1-x^(3k-2)) = Sum_{k>0} x^k/(1-x^(3k)). - Michael Somos, Sep 20 2005
Equals A051731 * [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, ...]. - Gary W. Adamson, Nov 06 2007
Sum_{k=1..n} a(k) = n*log(n)/3 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,3) - (1 - gamma)/3 = A256425 - (1 - A001620)/3 = 0.536879... (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
Comments