A001836 Numbers k such that phi(2k-1) < phi(2k), where phi is Euler's totient function A000010.
53, 83, 158, 263, 293, 368, 578, 683, 743, 788, 878, 893, 908, 998, 1073, 1103, 1208, 1238, 1268, 1403, 1418, 1502, 1523, 1658, 1733, 1838, 1943, 1964, 2048, 2063, 2153, 2228, 2243, 2258, 2363, 2393, 2423, 2468, 2558, 2573, 2633, 2657, 2678
Offset: 1
References
- Jeffrey Shallit, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- V. L. Klee, Jr., Some remarks on Euler's totient function, Amer. Math. Monthly, 54 (1947), 332.
- Don Reble, Python program.
- J. Shallit, Letter to N. J. A. Sloane, Jul 17 1975.
Programs
-
Haskell
a001836 n = a001836_list !! (n-1) a001836_list = f a000010_list 1 where f (u:v:ws) x = if u < v then x : f ws (x + 1) else f ws (x + 1) -- Reinhard Zumkeller, Jul 11 2014
-
Maple
with(numtheory): A001836:=n->`if`(phi(2*n-1) < phi(2*n), n, NULL): seq(A001836(n), n=1..5*10^3); # Wesley Ivan Hurt, Oct 10 2014
-
Mathematica
Select[Range[3000], EulerPhi[2# - 1] < EulerPhi[2#] &] (* Harvey P. Dale, Apr 01 2012 *) Position[Partition[EulerPhi[Range[6000]],2],?(#[[1]]<#[[2]]&),1,Heads-> False]//Flatten (* _Harvey P. Dale, Jul 02 2021 *)
-
PARI
is(n)=eulerphi(2*n-1)
Charles R Greathouse IV, Feb 21 2013 -
Python
from sympy import totient def ok(n): return totient(2*n - 1) < totient(2*n) # Indranil Ghosh, Apr 29 2017
Extensions
Corrected and extended by Don Reble, Jan 04 2007