cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A080061 Triangle of coefficients of polynomials P(n; x) = Permanent(M), where M=[m(i,j)] is n X n matrix defined by m(i,j)=x if 0<=i-j<=2 else m(i,j)=1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 1, 4, 8, 10, 1, 5, 21, 38, 34, 21, 1, 33, 122, 209, 206, 109, 40, 1, 236, 849, 1400, 1351, 836, 295, 72, 1, 1918, 6719, 10849, 10543, 6629, 2821, 715, 125, 1, 17440, 59873, 95516, 92708, 60284, 26870, 8372, 1604, 212, 1, 175649, 593686
Offset: 0

Views

Author

Keywords

Examples

			1;
0,1;
0,1,1;
0,1,4,1;
1,4,8,10,1;
5,21,38,34,21,1;
... P(5; x) = Permanent(Matrix(5, 5, [[x,1,1,1,1],[x,x,1,1,1],[x,x,x,1,1],[1,x,x,x,1],[1,1,x,x,x]]))= 5+21*x+38*x^2+34*x^3+21*x^4+x^5.
		

References

  • J. Riordan, The enumeration of permutations with three-ply staircase restrictions, unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963. See Table 1. - N. J. A. Sloane, Aug 27 2013 (See A001883)

Crossrefs

Row sums = A000142, first column = A001887, second column = A001888, third column = A001889, fourth column = A001890, A080018.
Cf. A001883.

Programs

  • Maple
    A080061_line := proc(n)
        local M,r,c,p,pord ;
        if n = 0 then
            return [1] ;
        else
            M := Matrix(n,n) ;
            for r to n do
            for c to n do
                if r-c >=0 and r-c <=2 then
                    M[r,c] := x ;
                else
                    M[r,c] := 1 ;
                end if;
            end do:
            end do:
            p := LinearAlgebra[Permanent](M) ;
            pord := degree(p) ;
            [seq( coeff(p,x,r),r=0..pord)] ;
        end if;
    end proc:
    for n from 0 to 10 do
        print(A080061_line(n)) ;
    end do: # R. J. Mathar, Sep 18 2013
  • Mathematica
    M[n_] := Table[If[0 <= i-j <= 2, x, 1], {i, 1, n}, {j, 1, n}]; M[0]={{1}}; Table[CoefficientList[Permanent[M[n]], x], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 06 2016 *)

A078509 Number of permutations p of {1,2,...,n} such that p(i)-i != 1 and p(i)-i != 2 for all i.

Original entry on oeis.org

1, 1, 1, 1, 5, 23, 131, 883, 6859, 60301, 591605, 6405317, 75843233, 974763571, 13512607303, 200949508327, 3190881283415, 53880906258521, 964039575154409, 18217997734199113, 362584510633666621, 7580578211464070863, 166099466140519353035, 3806162403831340850651
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, 1,
          (n-1)*a(n-1) +(n-3)*a(n-2) +a(n-3))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 10 2014
  • Mathematica
    a = DifferenceRoot[Function[{y, n}, {-y[n] - n y[n+1] - (n+2) y[n+2] + y[n+3] == 0, y[0] == 1, y[1] == 1, y[2] == 1, y[3] == 1}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)

Formula

From Vladeta Jovovic, Jul 16 2007: (Start)
G.f.: x/(1+x)*Sum_{n>=0} (n+1)!*(x/(1+x)^2)^n.
a(n) = Sum_{k=1..n} (-1)^(n-k)*k!*binomial(n+k-2,2*k-2). (End)
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Alois P. Heinz, Jan 10 2014
Showing 1-2 of 2 results.