cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001939 Expansion of (psi(-x) / phi(-x))^5 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 5, 20, 65, 185, 481, 1165, 2665, 5820, 12220, 24802, 48880, 93865, 176125, 323685, 583798, 1035060, 1806600, 3108085, 5276305, 8846884, 14663645, 24044285, 39029560, 62755345, 100004806, 158022900, 247710570, 385366265, 595212280, 913040649, 1391449780
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 5*x + 20*x^2 + 65*x^3 + 185*x^4 + 481*x^5 + 1165*x^6 + 2665*x^7 + ...
q^5 + 5*q^13 + 20*q^21 + 65*q^29 + 185*q^37 + 481*q^45 + 1165*q^53 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, Pi/4, q^(1/2)] / (16 q)^(1/8))^5, {q, 0, n}] (* Michael Somos, Sep 24 2011 *)
    a[ n_] := SeriesCoefficient[ (Product[1 - x^k, {k, 4, n, 4}] / Product[1 - x^k, {k, n}])^5, {x, 0, n}] (* Michael Somos, Sep 24 2011 *)
    nn = 4*20; b = Flatten[Table[{5, 5, 5, 0}, {nn/4}]]; CoefficientList[x*Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Aug 17 2012 *)
    QP = QPochhammer; s = (QP[q^4]/QP[q])^5 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^5, n))} /* Michael Somos, Sep 24 2011 */

Formula

Expansion of q^(-5/8) * (eta(q^4) / eta(q))^5 in powers of q. - Michael Somos, Sep 24 2011
Euler transform of period 4 sequence [ 5, 5, 5, 0, ...]. - Michael Somos, Sep 24 2011
G.f.: (Product_{k>0} (1 - x^(4*k)) / (1 - x^k))^5. - Michael Somos, Sep 24 2011
a(n) = (-1)^n * A195861(n). - Michael Somos, Sep 24 2011
a(n) ~ 5^(1/4) * exp(sqrt(5*n/2)*Pi) / (64 * 2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 27 2015