cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001941 Absolute values of coefficients of an elliptic function.

Original entry on oeis.org

1, 7, 35, 140, 483, 1498, 4277, 11425, 28889, 69734, 161735, 362271, 786877, 1662927, 3428770, 6913760, 13660346, 26492361, 50504755, 94766875, 175221109, 319564227, 575387295, 1023624280, 1800577849, 3133695747, 5399228149, 9214458260, 15584195428
Offset: 0

Views

Author

Keywords

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nn = 4*10; b = Flatten[Table[{7, 7, 7, 0}, {nn/4}]]; CoefficientList[x*Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Aug 17 2012 *)
    nmax = 40; CoefficientList[Series[Product[((1 - x^(4*k)) / (1 - x^k))^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 15 2017 *)

Formula

G.f.: Product ( 1 - x^k )^-c(k), c(k) = 7, 7, 7, 0, 7, 7, 7, 0, ....
a(n) ~ 7^(1/4) * exp(sqrt(7*n/2)*Pi) / (256*2^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
G.f.: Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^7. - Ilya Gutkovskiy, Dec 04 2017