A001952 A Beatty sequence: a(n) = floor(n*(2 + sqrt(2))).
3, 6, 10, 13, 17, 20, 23, 27, 30, 34, 37, 40, 44, 47, 51, 54, 58, 61, 64, 68, 71, 75, 78, 81, 85, 88, 92, 95, 99, 102, 105, 109, 112, 116, 119, 122, 126, 129, 133, 136, 139, 143, 146, 150, 153, 157, 160, 163, 167, 170, 174, 177, 180, 184, 187, 191, 194, 198
Offset: 1
References
- Eric DuchĂȘne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, Urban Larsson, Wythoff Visions, Games of No Chance, Vol. 5; MSRI Publications, Vol. 70 (2017), pages 101-153.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 77.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- L. Carlitz, R. Scoville and V. E. Hoggatt, Jr. Pellian representatives, Fibonacci Quarterly, 10, issue 5, 1972, 449-488.
- Ian G. Connell, A generalization of Wythoff's game, Canad. Math. Bull. 2 (1959) 181-190
- J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, 2012; J. Int. Seq. 16 (2013) #13.1.8
- A. S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, 89 (1982), 353-361 (the case a=2).
- Aviezri S. Fraenkel, On the recurrence f(m+1)= b(m)*f(m)-f(m-1) and applications, Discrete Mathematics 224 (2000), pp. 273-279.
- Wen An Liu and Xiao Zhao, Adjoining to (s,t)-Wythoff's game its P-positions as moves, Discrete Applied Mathematics, 179 (2014), 28-43. See Table 3.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Index entries for sequences related to Beatty sequences
Crossrefs
A bisection of A094077.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021
Programs
-
Haskell
a001952 = floor . (* (sqrt 2 + 2)) . fromIntegral -- Reinhard Zumkeller, Jul 03 2015
-
Mathematica
Table[Floor[n*(2 + Sqrt[2])], {n, 60}] (* Stefan Steinerberger, Apr 15 2006 *) Array[Floor[#(2+Sqrt[2])]&,60] (* Harvey P. Dale, Dec 01 2015 *)
-
PARI
a(n)=2*n+sqrtint(2*n^2) \\ Charles R Greathouse IV, Jan 05 2016
-
Python
from sympy import integer_nthroot def A001952(n): return 2*n+integer_nthroot(2*n**2,2)[0] # Chai Wah Wu, Mar 16 2021
Comments