cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001973 Expansion of (1+x^3)/((1-x)*(1-x^2)^2*(1-x^3)).

Original entry on oeis.org

1, 1, 3, 5, 8, 12, 18, 24, 33, 43, 55, 69, 86, 104, 126, 150, 177, 207, 241, 277, 318, 362, 410, 462, 519, 579, 645, 715, 790, 870, 956, 1046, 1143, 1245, 1353, 1467, 1588, 1714, 1848, 1988
Offset: 0

Views

Author

Keywords

Comments

a(1..3)=0; a(n) is the number of partitions of 2*(n+1) with 4 different numbers from the set {1,...,n}; the number of partitions of 2*n + 2 - C and 2*n + 2 + C are equal; example: n=6; 2*n + 2 = 14; a(6)=3; (10,1), (11,1), (12,2), (13,2), (14,3), (15,2), (16,2), (17,1), (18,1). - Paul Weisenhorn, Jun 01 2009. [I believe this comment refers to the sequence 0, 0, 0, 1, 1, 3, 5, ... with offset 1. - N. J. A. Sloane, Mar 30 2023]

References

  • A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
  • M. Jeger, Einfuehrung in die Kombinatorik, Klett, 1975, pages 110ff. [From Paul Weisenhorn, Jun 01 2009]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A001973:=(1-z+z**2)/(z+1)/(z**2+z+1)/(z-1)**4; # Simon Plouffe in his 1992 dissertation
    with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+1), right=Set(U, card=2)}, unlabeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=6..45) ; # Zerinvary Lajos, Feb 07 2008
  • Mathematica
    CoefficientList[Series[(1+x^3)/((1-x)*(1-x^2)^2*(1-x^3)),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
  • PARI
    Vec((1+x^3)/((1-x)*(1-x^2)^2*(1-x^3))+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012

Formula

a(n) is the coefficient of x^(2*n+2) in the g.f. Product_{s=1..4} (x^s - x^(n+1))/(1-x^s). - Paul Weisenhorn, Jun 01 2009
a(n) = 2*a(n-1) - a(n-3) - a(n-4) + 2*a(n-6) - a(n-7). Vincenzo Librandi, Jun 11 2012