A001988 Let p be the n-th odd prime. a(n) is the least prime congruent to 7 modulo 8 such that Legendre(-a(n), q) = -Legendre(-1, q) for all odd primes q <= p.
7, 7, 127, 463, 463, 487, 1423, 33247, 73327, 118903, 118903, 118903, 454183, 773767, 773767, 773767, 773767, 86976583, 125325127, 132690343, 788667223, 788667223, 1280222287, 2430076903, 10703135983, 10703135983, 10703135983
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451.
- D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451 [Annotated scanned copy]
Crossrefs
Cf. A001990.
Programs
-
PARI
isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(p, q) != -kronecker(-1, q), return (0));); return (1);} a(n) = {oddpn = prime(n+1); forprime(p=3, , if ((p%8) == 7, if (isok(p, oddpn), return (p));););} \\ Michel Marcus, Oct 18 2017
-
Python
from sympy import legendre_symbol as L, primerange, prime, nextprime def isok(p, oddpn): for q in primerange(3, oddpn + 1): if L(p, q)!=-L(-1, q): return 0 return 1 def a(n): oddpn=prime(n + 1) p=3 while True: if p%8==7: if isok(p, oddpn): return p p=nextprime(p) # Indranil Ghosh, Oct 23 2017, after PARI code by Michel Marcus
Extensions
Better name and more terms from Sean A. Irvine, Mar 06 2013
Name and offset corrected by Michel Marcus, Oct 18 2017
Comments