cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001989 Class numbers associated with terms of A001988.

Original entry on oeis.org

1, 1, 5, 7, 7, 7, 9, 53, 73, 83, 83, 83, 157, 185, 185, 185, 185, 1927, 2295, 2273, 5313, 5313, 7173, 9529, 18545, 18545, 18545, 18545, 22635, 22635, 66011, 121725, 344909, 344909
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001988.

Programs

  • PARI
    isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(p, q) != -kronecker(-1, q), return (0)); ); return (1); }
    a(n) = {my(oddpn = prime(n+1)); forprime(p=3, , if (((p%8) == 7) &&  isok(p, oddpn), return (qfbclassno(-p*if(p%4>1, 4, 1)))););} \\ Michel Marcus, Oct 19 2017

Extensions

Better name from Sean A. Irvine, Mar 06 2013
Terms corrected by Sean A. Irvine, Mar 06 2013
Offset changed by Michel Marcus, Oct 19 2017

A001990 Let p be the n-th odd prime. a(n) is the least prime congruent to 5 modulo 8 such that Legendre(-a(n), q) = -Legendre(-2, q) for all odd primes q <= p.

Original entry on oeis.org

5, 29, 29, 29, 29, 29, 29, 29, 23669, 23669, 23669, 23669, 23669, 23669, 1508789, 5025869, 9636461, 9636461, 9636461, 37989701, 37989701, 37989701, 37989701, 37989701, 240511301, 240511301
Offset: 1

Views

Author

Keywords

Comments

Numbers so far are all congruent to 5 (mod 24). - Ralf Stephan, Jul 07 2003

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001988.

Programs

  • PARI
    isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(p, q) != -kronecker(-2, q), return (0));); return (1);}
    a(n) = {oddpn = prime(n+1); forprime(p=3, , if ((p%8) == 5, if (isok(p, oddpn), return (p));););} \\ Michel Marcus, Oct 18 2017

Extensions

Better name from Sean A. Irvine, Mar 06 2013
Name and offset corrected by Michel Marcus, Oct 18 2017
Showing 1-2 of 2 results.