cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A001991 Class numbers associated with terms of A001990.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 2, 2, 46, 46, 46, 46, 46, 46, 406, 718, 950, 950, 950, 1698, 1698, 1698, 1698, 1698, 3990, 3990, 3990, 53510, 77970, 89478, 89478, 89478, 89478, 89478, 89478
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001990.

Programs

  • PARI
    isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(p, q) != -kronecker(-2, q), return (0)); ); return (1); }
    a(n) = {oddpn = prime(n+1); forprime(p=3, , if (((p%8) == 5) && isok(p, oddpn), return (qfbclassno(-8*p))); ); } \\ Michel Marcus, Oct 19 2017

Formula

a(n) = ClassNumber(-8*A001990(n)). - Sean A. Irvine, Mar 06 2013

Extensions

Better name from Sean A. Irvine, Mar 06 2013
Offset changed by Michel Marcus, Oct 19 2017

A001988 Let p be the n-th odd prime. a(n) is the least prime congruent to 7 modulo 8 such that Legendre(-a(n), q) = -Legendre(-1, q) for all odd primes q <= p.

Original entry on oeis.org

7, 7, 127, 463, 463, 487, 1423, 33247, 73327, 118903, 118903, 118903, 454183, 773767, 773767, 773767, 773767, 86976583, 125325127, 132690343, 788667223, 788667223, 1280222287, 2430076903, 10703135983, 10703135983, 10703135983
Offset: 1

Views

Author

Keywords

Comments

Numbers so far are all congruent to 7 (mod 24). - Ralf Stephan, Jul 07 2003

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001990.

Programs

  • PARI
    isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(p, q) != -kronecker(-1, q), return (0));); return (1);}
    a(n) = {oddpn = prime(n+1); forprime(p=3, , if ((p%8) == 7, if (isok(p, oddpn), return (p));););} \\ Michel Marcus, Oct 18 2017
    
  • Python
    from sympy import legendre_symbol as L, primerange, prime, nextprime
    def isok(p, oddpn):
        for q in primerange(3, oddpn + 1):
            if L(p, q)!=-L(-1, q): return 0
        return 1
    def a(n):
        oddpn=prime(n + 1)
        p=3
        while True:
            if p%8==7:
                if isok(p, oddpn): return p
            p=nextprime(p) # Indranil Ghosh, Oct 23 2017, after PARI code by Michel Marcus

Extensions

Better name and more terms from Sean A. Irvine, Mar 06 2013
Name and offset corrected by Michel Marcus, Oct 18 2017
Showing 1-2 of 2 results.