A002022 In the pile of coconuts problem, the number of coconuts that remain to be shared equally at the end of the process.
0, 6, 240, 1020, 78120, 279930, 40353600, 134217720, 31381059600, 99999999990, 34522712143920, 106993205379060, 51185893014090744, 155568095557812210, 98526125335693359360, 295147905179352825840, 239072435685151324847136
Offset: 2
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 2..100
- Anonymous, The Monkey and the Coconuts (with FormulaOne program)
- Santo D'Agostino, "The Coconut Problem"; Updated With Solution, May 2011.
- R. S. Underwood and Robert E. Moritz, Problem 3242, Amer. Math. Monthly, 35 (1928), 47-48.
Programs
-
Maple
f := proc(n) if n mod 2 = 1 then RETURN((n-1)^n-(n-1)) else RETURN((n-1)^(n+1)-(n-1)) fi; end:
-
Mathematica
Rest[Table[If[OddQ[n],(n-1)^n-(n-1),(n-1)^(n+1)-(n-1)],{n,30}]] (* Harvey P. Dale, Oct 21 2011 *)
Extensions
Formula and more terms from James Sellers, Feb 10 2000
Detail added to the name by Peter Munn, Jun 16 2023
Comments