cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002031 Number of labeled connected digraphs on n nodes where every node has indegree 0 or outdegree 0 and no isolated nodes.

Original entry on oeis.org

2, 6, 38, 390, 6062, 134526, 4172198, 178449270, 10508108222, 853219059726, 95965963939958, 15015789392011590, 3282145108526132942, 1005193051984479922206, 432437051675617901246918, 261774334771663762228012950, 223306437526333657726283273822
Offset: 2

Views

Author

Keywords

Comments

Also number of labeled connected graphs with 2-colored nodes with no isolated nodes where black nodes are only connected to white nodes and vice versa.
In- or outdegree zero implies loops are not admitted. Multi-arcs are not admitted. - R. J. Mathar, Nov 18 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001831, A001832, A002032, A047863, A052332, A007776 (unlabeled case). Essentially the same as A002027.

Programs

  • Maple
    logtr:= proc(p) local b; b:=proc(n) option remember; local k; if n=0 then 1 else p(n)- add(k *binomial(n,k) *p(n-k) *b(k), k=1..n-1)/n fi end end: digr:= n-> add(binomial(n,k) *(2^k-2)^(n-k), k=0..n): a:= logtr(digr): seq(a(n), n=2..25);  # Alois P. Heinz, Sep 14 2008
  • Mathematica
    terms = 17; s = Log[Sum[Exp[(2^n - 2)*x]*(x^n/n!), {n, 0, terms+2}]] + O[x]^(terms+2); Drop[CoefficientList[s, x]*Range[0, terms+1]!, 2] (* Jean-François Alcover, Nov 08 2011, after Vladeta Jovovic, updated Jan 12 2018 *)

Formula

Logarithmic transform of A052332.
E.g.f.: log(Sum(exp((2^n-2)*x)*x^n/n!, n=0..infinity)). - Vladeta Jovovic, May 28 2004
a(n) = f(n,2) using functions defined in A002032. - Sean A. Irvine, May 29 2013

Extensions

More terms, formula and new title from Christian G. Bower, Dec 15 1999
Corrected by Vladeta Jovovic, Apr 12 2003