cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002035 Numbers that contain primes to odd powers only.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 101
Offset: 1

Views

Author

Keywords

Comments

Complement of the union of {1} and A072587. - Reinhard Zumkeller, Nov 15 2012, corrected version from Jun 23 2002
A036537 is a subsequence and this sequence is a subsequence of A162644. - Reinhard Zumkeller, Jul 08 2009
The asymptotic density of this sequence is A065463. - Amiram Eldar, Sep 18 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002035 n = a002035_list !! (n-1)
    a002035_list = filter (all odd . a124010_row) [1..]
    -- Reinhard Zumkeller, Nov 14 2012
    
  • Maple
    isA002035 := proc(n)
        local pe;
        for pe in ifactors(n)[2] do
            if type(pe[2],'even') then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A002035 := proc(n)
        option remember;
        if n =1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA002035(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A002035(n),n=1..100) ; # R. J. Mathar, Nov 27 2017
  • Mathematica
    ok[n_] := And @@ OddQ /@ FactorInteger[n][[All, 2]];
    Select[Range[2, 101], ok]
    (* Jean-François Alcover, Apr 22 2011 *)
    Select[Range[2,110],AllTrue[FactorInteger[#][[All,2]],OddQ]&] (* Harvey P. Dale, Nov 02 2022 *)
  • PARI
    is(n)=Set(factor(n)[,2]%2)==[1] \\ Charles R Greathouse IV, Feb 07 2017

Extensions

More terms from Reinhard Zumkeller, Jun 23 2002