cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A290369 Number of partitions of n into parts that contain primes to odd powers only (A002035).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 5, 5, 8, 9, 12, 15, 19, 23, 29, 35, 43, 52, 64, 77, 93, 111, 134, 158, 190, 225, 266, 315, 372, 435, 514, 599, 703, 819, 955, 1110, 1290, 1493, 1732, 1998, 2309, 2659, 3062, 3518, 4040, 4630, 5305, 6063, 6931, 7907, 9015, 10265, 11680, 13268, 15070, 17087, 19366, 21923, 24799
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2017

Keywords

Examples

			a(7) = 3 because we have [7], [5, 2] and [3, 2, 2].
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - Boole[And @@ OddQ /@ FactorInteger[k][[All, 2]]] x^k), {k, 2, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^A002035(k)).

A290370 Number of partitions of n into distinct parts that contain primes to odd powers only (A002035).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 1, 2, 3, 2, 4, 4, 3, 7, 5, 8, 9, 9, 12, 12, 14, 18, 18, 22, 27, 25, 34, 34, 39, 47, 49, 57, 67, 67, 83, 88, 96, 115, 119, 139, 154, 165, 190, 206, 224, 259, 273, 311, 341, 367, 415, 447, 490, 550, 588, 654, 720, 771, 862, 928, 1013, 1121, 1204, 1324, 1448, 1554, 1716, 1850, 2008, 2203, 2366
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2017

Keywords

Examples

			a(8) = 3 because we have [8], [6, 2] and [5, 3].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[1 + Boole[And @@ OddQ /@ FactorInteger[k][[All, 2]]] x^k, {k, 2, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A002035(k)).

A268335 Exponentially odd numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Vladimir Shevelev, Feb 01 2016

Keywords

Comments

The sequence is formed by 1 and the numbers whose prime power factorization contains only odd exponents.
The density of the sequence is the constant given by A065463.
Except for the first term the same as A002035. - R. J. Mathar, Feb 07 2016
Also numbers k all of whose divisors are bi-unitary divisors (i.e., A286324(k) = A000005(k)). - Amiram Eldar, Dec 19 2018
The term "exponentially odd integers" was apparently coined by Cohen (1960). These numbers were also called "unitarily 2-free", or "2-skew", by Cohen (1961). - Amiram Eldar, Jan 22 2024

Crossrefs

Programs

  • Mathematica
    Select[Range@ 100, AllTrue[Last /@ FactorInteger@ #, OddQ] &] (* Version 10, or *)
    Select[Range@ 100, Times @@ Boole[OddQ /@ Last /@ FactorInteger@ #] == 1 &] (* Michael De Vlieger, Feb 02 2016 *)
  • PARI
    isok(n)=my(f = factor(n)); for (k=1, #f~, if (!(f[k,2] % 2), return (0))); 1; \\ Michel Marcus, Feb 02 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A268335_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(e&1 for e in factorint(n).values()),count(max(startvalue,1)))
    A268335_list = list(islice(A268335_gen(),20)) # Chai Wah Wu, Jun 22 2023

Formula

Sum_{a(n)<=x} 1 = C*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and C = Product_{prime p} (1 - 1/p*(p + 1)) = 0.7044422009991... (A065463).
Sum_{n>=1} 1/a(n)^s = zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)), s>1. - Amiram Eldar, Sep 26 2023

A036537 Numbers whose number of divisors is a power of 2.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Keywords

Comments

Primes and A030513(d(x)=4) are subsets; d(16k+4) and d(16k+12) have the form 3Q, so x=16k+4 or 16k-4 numbers are missing.
A number m is a term if and only if all its divisors are infinitary, or A000005(m) = A037445(m). - Vladimir Shevelev, Feb 23 2017
All exponents in the prime number factorization of a(n) have the form 2^k-1, k >= 1. So it is an S-exponential sequence (see Shevelev link) with S={2^k-1}. Using Theorem 1, we obtain that a(n) ~ C*n, where C = Product((1-1/p)*(1 + Sum_{i>=1} 1/p^(2^i-1))). - Vladimir Shevelev Feb 27 2017
This constant is C = 0.687827... . - Peter J. C. Moses, Feb 27 2017
From Peter Munn, Jun 18 2022: (Start)
1 and numbers j*m^2, j squarefree, m >= 1, such that all prime divisors of m divide j, and m is in the sequence.
Equivalently, the nonempty set of numbers whose squarefree part (A007913) and squarefree kernel (A007947) are equal, and whose square part's square root (A000188) is in the set.
(End)

Examples

			383, 384, 385, 386 have 2, 16, 8, 4 divisors, respectively, so they are consecutive terms of this sequence.
		

Crossrefs

A005117, A030513, A058891, A175496, A336591 are subsequences.
Complement of A162643; subsequence of A002035. - Reinhard Zumkeller, Jul 08 2009
Subsequence of A162644, A337533.
The closure of the squarefree numbers under application of A355038(.) and lcm.

Programs

  • Haskell
    a036537 n = a036537_list !! (n-1)
    a036537_list = filter ((== 1) . a209229 . a000005) [1..]
    -- Reinhard Zumkeller, Nov 15 2012
    
  • Mathematica
    bi[ x_ ] := 1-Sign[ N[ Log[ 2, x ], 5 ]-Floor[ N[ Log[ 2, x ], 5 ] ] ]; ld[ x_ ] := Length[ Divisors[ x ] ]; Flatten[ Position[ Table[ bi[ ld[ x ] ], {x, 1, m} ], 1 ] ]
    Select[Range[110],IntegerQ[Log[2,DivisorSigma[0,#]]]&] (* Harvey P. Dale, Nov 20 2016 *)
  • PARI
    is(n)=n=numdiv(n);n>>valuation(n,2)==1 \\ Charles R Greathouse IV, Mar 27 2013
    
  • PARI
    isok(m) = issquarefree(m) || (omega(m) == omega(core(m)) && isok(core(m,1)[2])); \\ Peter Munn, Jun 18 2022
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A036537_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(map(lambda m:not((k:=m+1)&-k)^k,factorint(n).values())),count(max(startvalue,1)))
    A036537_list = list(islice(A036537_gen(),30)) # Chai Wah Wu, Jan 04 2023

Formula

A209229(A000005(a(n))) = 1. - Reinhard Zumkeller, Nov 15 2012
a(n) << n. - Charles R Greathouse IV, Feb 25 2017
m is in the sequence iff for k >= 0, A352780(m, k+1) | A352780(m, k)^2. - Peter Munn, Jun 18 2022

A162642 Number of odd exponents in the canonical prime factorization of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 2, 0, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 0, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 0, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 0, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 0, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2009

Keywords

Comments

a(n) is also known as the squarefree rank of n. - Jason Kimberley, Jul 08 2017
The number of primes that are infinitary divisors of n. - Amiram Eldar, Oct 01 2023

Crossrefs

Programs

Formula

a(n) = A001221(n) - A162641(n).
a(n) = A001221(A007913(n)). - Jason Kimberley, Jan 06 2016
a(A000290(n)) = 0, n > 0. - Michel Marcus, Jan 08 2016
G.f.: Sum_{i>=1} Sum_{j>=1} (-1)^j x^(prime(i)^j)/(x^(prime(i)^j) - 1). - Robert Israel, Jan 15 2016
From Antti Karttunen, Nov 28 2017: (Start)
Additive with a(p^e) = A000035(e).
a(n) = A056169(n) + A295662(n).
A056169(n) <= a(n) <= A056169(n) + A295659(n).
a(n) <= A295664(n).
(End)
Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = gamma + Sum_{p prime} (log(1-1/p) + 1/(p+1)) = A077761 - A179119 = -0.0687327134... and gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2021

A162641 Number of even exponents in canonical prime factorization of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2009

Keywords

Crossrefs

Cf. A268335 (positions of zeros), A295316.

Programs

Formula

a(n) = A001221(n) - A162642(n).
a(A002035(n)) = 0.
a(A072587(n)) > 0.
Additive with a(p^e) = A059841(e). - Antti Karttunen, Jul 23 2017
From Antti Karttunen, Nov 28 2017: (Start)
a(n) = A162642(A003557(n)).
a(n) <= A056170(n).
(End)
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p*(p+1)) = 0.3302299262... (A179119). - Amiram Eldar, Dec 25 2021

A072587 Numbers having at least one prime factor with an even exponent.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 108, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 200, 204
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2002

Keywords

Comments

Complement of the union of {1} and A002035. [Correction, Nov 15 2012]
A162645 is a subsequence and this sequence is a subsequence of A162643. - Reinhard Zumkeller, Jul 08 2009
The asymptotic density of this sequence is 1 - A065463 = 0.2955577990... - Amiram Eldar, Jul 21 2020
A number k is a term iff its core (A007913) properly divides its kernel (A007947), that is iff A336643(k) > 1. - David James Sycamore, Sep 18 2023

Crossrefs

Programs

  • Haskell
    a072587 n = a072587_list !! (n-1)
    a072587_list = tail $ filter (any even . a124010_row) [1..]
    -- Reinhard Zumkeller, Nov 15 2012
    
  • Mathematica
    Select[Range[210], MemberQ[EvenQ[Transpose[FactorInteger[#]][[2]]], True] &] (* Harvey P. Dale, Apr 03 2012 *)
  • PARI
    is(n)=n>3 && Set(factor(n)[,2]%2)[1]==0 \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A072587_gen(startvalue=1): # generator of terms
        return filter(lambda n:not all(map(lambda m:m&1,factorint(n).values())),count(max(startvalue,1)))
    A072587_list = list(islice(A072587_gen(),30)) # Chai Wah Wu, Jan 04 2023

Extensions

Thanks to Zak Seidov, who noticed that 1 had to be removed. - Reinhard Zumkeller, Nov 15 2012

A162511 Multiplicative function with a(p^e) = (-1)^(e-1).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1
Offset: 1

Views

Author

Gerard P. Michon, Jul 05 2009

Keywords

Crossrefs

Programs

  • Maple
    A162511 := proc(n)
        local a,f;
        a := 1;
        for f in ifactors(n)[2] do
            a := a*(-1)^(op(2,f)-1) ;
        end do:
        return a;
    end proc: # R. J. Mathar, May 20 2017
  • Mathematica
    a[n_] := (-1)^(PrimeOmega[n] - PrimeNu[n]); Array[a, 100] (* Jean-François Alcover, Apr 24 2017, after Reinhard Zumkeller *)
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,-(-1)^f[i]) \\ Charles R Greathouse IV, Mar 09 2015
    
  • Python
    from sympy import factorint
    from operator import mul
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [(-1)**(f[i] - 1) for i in f]) # Indranil Ghosh, May 20 2017
    
  • Python
    from functools import reduce
    from sympy import factorint
    def A162511(n): return -1 if reduce(lambda a,b:~(a^b), factorint(n).values(),0)&1 else 1 # Chai Wah Wu, Jan 01 2023

Formula

Multiplicative function with a(p^e)=(-1)^(e-1) for any prime p and any positive exponent e.
a(n) = 1 when n is a squarefree number (A005117).
From Reinhard Zumkeller, Jul 08 2009 (Start)
a(n) = (-1)^(A001222(n)-A001221(n)).
a(A162644(n)) = +1; a(A162645(n)) = -1. (End)
a(n) = A076479(n) * A008836(n). - R. J. Mathar, Mar 30 2011
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A307868. - Amiram Eldar, Sep 18 2022
Dirichlet g.f.: Product_{p prime} ((p^s + 2)/(p^s + 1)). - Amiram Eldar, Oct 26 2023

A267115 Bitwise-AND of the exponents of primes in the prime factorization of n, a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 0, 1, 1, 1, 4, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 0, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 6, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 0, 1, 1, 1, 0, 4, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 03 2016

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 13, 105, 826, 7440, 71558, 707625, 7053959, 70473172, 704531711, 7044701307, 70445097231, ... . Apparently, the asymptotic mean of this sequence is limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 0.7044... . - Amiram Eldar, Sep 09 2022

Examples

			For n = 24 = 2^3 * 3^1, bitwise-and of 3 and 1 ("11" and "01" in binary) gives 1, thus a(24) = 1.
For n = 210 = 2^1 * 3^1 * 5^1 * 7^1, bitwise-and of 1, 1, 1 and 1 gives 1, thus a(210) = 1.
For n = 720 = 2^4 * 3^2 * 5^1, bitwise-and of 4, 2 and 1 ("100", "10" and "1" in binary) gives zero, thus a(720) = 0.
		

Crossrefs

Cf. A002035 (indices of odd numbers), A072587 (indices of even numbers that occur after a(1)).
Cf. A267117 (indices of zeros).

Programs

  • Mathematica
    {0}~Join~Table[BitAnd @@ Map[Last, FactorInteger@ n], {n, 2, 120}] (* Michael De Vlieger, Feb 07 2016 *)
  • PARI
    a(n)=my(f = factor(n)[,2]); if (#f == 0, return (0)); my(b = f[1]); for (k=2, #f, b = bitand(b, f[k]);); b; \\ Michel Marcus, Feb 07 2016
    
  • PARI
    a(n)=if(n>1, fold(bitand, factor(n)[,2]), 0) \\ Charles R Greathouse IV, Aug 04 2016
    
  • Python
    from functools import reduce
    from operator import and_
    from sympy import factorint
    def A267115(n): return reduce(and_,factorint(n).values()) if n > 1 else 0 # Chai Wah Wu, Aug 31 2022

Formula

If A028234(n) = 1 [when n is a power of prime, in A000961], a(n) = A067029(n), otherwise a(n) = A067029(n) AND a(A028234(n)). [Here AND stands for bitwise-and, A004198.]

A162644 Numbers m such that A162511(m) = +1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2009

Keywords

Comments

Also numbers n with A008836(n)=(-1)^A001221(n). - Enrique Pérez Herrero, Aug 03 2012
This sequence has an asymptotic density (1 + A065472/zeta(2))/2 = 0.735840... (Mossinghoff and Trudgian, 2019). - Amiram Eldar, Jul 07 2020

Crossrefs

Complement of A162645.
A002035 is a subsequence.

Programs

  • Mathematica
    Select[Range[100], EvenQ[PrimeOmega[#] - PrimeNu[#]] &] (* Amiram Eldar, Jul 07 2020 *)
Showing 1-10 of 16 results. Next