cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 140 results. Next

A350389 a(n) is the largest unitary divisor of n that is an exponentially odd number (A268335).

Original entry on oeis.org

1, 2, 3, 1, 5, 6, 7, 8, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 24, 1, 26, 27, 7, 29, 30, 31, 32, 33, 34, 35, 1, 37, 38, 39, 40, 41, 42, 43, 11, 5, 46, 47, 3, 1, 2, 51, 13, 53, 54, 55, 56, 57, 58, 59, 15, 61, 62, 7, 1, 65, 66, 67, 17, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]^f[i,2], 1));} \\ Amiram Eldar, Sep 18 2023
  • Python
    from math import prod
    from sympy import factorint
    def A350389(n): return prod(p**e if e % 2 else 1 for p, e in factorint(n).items()) # Chai Wah Wu, Feb 24 2022
    

Formula

Multiplicative with a(p^e) = p^e if e is odd and 1 otherwise.
a(n) = n/A350388(n).
A001222(a(n)) = A350387(n).
a(n) = 1 if and only if n is a positive square (A000290 \ {0}).
a(n) = n if and only if n is an exponentially odd number (A268335).
Sum_{k=1..n} a(k) ~ (1/2)*c*n^2, where c = Product_{p prime} (1 - p/(1+p+p^2+p^3)) = 0.7406196365...
Dirichlet g.f.: zeta(2*s-2) * zeta(2*s) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(3*s-1)). - Amiram Eldar, Sep 18 2023

A325837 The number of coreful divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2019

Keywords

Comments

First differs from A050361 at n = 64.
From Amiram Eldar, Sep 08 2023: (Start)
The number of exponentially odd divisors of n is A322483(n), and their sum is A033634(n).
A coreful divisor d of a number n is a divisor with the same set of distinct prime factors as n. (End)
Also, the number of divisors of n that are cubefull exponentially odd numbers (A335988). - Amiram Eldar, Feb 11 2024

Crossrefs

Cf. A003557, A005361 (number of coreful divisors), A046951, A268335.

Programs

  • Mathematica
    fun[p_,e_] := Floor[(e+1)/2]; a[n_] := Times@@(fun@@@FactorInteger[n]); Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x+1)\2, factor(n)[, 2])); \\ Amiram Eldar, Sep 01 2023

Formula

Multiplicative with a(p^e) = floor((e+1)/2).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/(p*(p^2-1))) = 1.231291... (A065487). - Amiram Eldar, Sep 10 2022
a(n) = A046951(A350390(n)) (the number of squares dividing the largest exponentially odd divisor of n). - Amiram Eldar, Sep 01 2023
From Amiram Eldar, Sep 08 2023: (Start)
a(n) = A046951(A003557(n)).
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s)). (End)

Extensions

Name corrected by Amiram Eldar, Sep 08 2023

A358346 a(n) is the sum of the unitary divisors of n that are exponentially odd (A268335).

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 9, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 36, 1, 42, 28, 8, 30, 72, 32, 33, 48, 54, 48, 1, 38, 60, 56, 54, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 84, 72, 72, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144
Offset: 1

Views

Author

Amiram Eldar, Nov 11 2022

Keywords

Comments

The number of unitary divisors of n that are exponentially odd is A055076(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + If[OddQ[e], p^e, 0]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + if(f[i,2]%2,  f[i,1]^f[i,2], 0));}

Formula

a(n) >= 1 with equality if and only if n is a square (A000290).
a(n) <= A033634(n) with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = p^e + 1 if e is odd, and 1 otherwise.
a(n) = A034448(n)/A358347(n).
Sum_{k=1..n} a(k) ~ n^2/2.
From Amiram Eldar, Sep 14 2023: (Start)
a(n) = A034448(A350389(n)).
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(2*s-1)). (End)

A366439 The sum of divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 15, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 60, 42, 40, 30, 72, 32, 63, 48, 54, 48, 38, 60, 56, 90, 42, 96, 44, 72, 48, 72, 54, 120, 72, 120, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 180, 90
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1); s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;;, 2]], OddQ], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), isexpodd = 1); for(i = 1, #f~, if(!(f[i, 2] % 2), isexpodd = 0; break)); if(isexpodd, print1(sigma(f), ", ")));
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A366439_gen(): # generator of terms
        for n in count(1):
            f = factorint(n)
            if all(e&1 for e in f.values()):
                yield prod((p**(e+1)-1)//(p-1) for p,e in f.items())
    A366439_list = list(islice(A366439_gen(),30)) # Chai Wah Wu, Oct 11 2023

Formula

a(n) = A000203(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/(2*d^2)) * Product_{p prime} (1 + 1/(p^5-p)) = 1.045911669131479732932..., where d = 0.7044422... (A065463) is the asymptotic density of the exponentially odd numbers.
The asymptotic mean of the abundancy index of the exponentially odd numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A268335(k) = (1/d) * Product_{p prime} (1 + 1/(p^5-p)) = 2 * c * d = 1.4735686365073812503199... .

A366438 The number of divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 8, 4, 4, 2, 8, 2, 6, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 2, 4, 2, 8, 4, 8, 4, 4, 2, 2, 4, 4, 8, 2, 4, 8, 2, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 8, 2, 4, 4, 4, 4, 12, 2, 2, 8, 2, 8, 8, 4, 2, 2, 8, 4, 2, 8, 4, 4, 4, 16, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Comments

1 is the only odd term in this sequence.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], Times @@ (e + 1), Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(vecprod(apply(x -> x+1, e)), ", ")));
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A366438_gen(): # generator of terms
        for n in count(1):
            f = factorint(n).values()
            if all(e&1 for e in f):
                yield prod(e+1 for e in f)
    A366438_list = list(islice(A366438_gen(),30)) # Chai Wah Wu, Oct 10 2023

Formula

a(n) = A000005(A268335(n)).

A368711 The maximal exponent in the prime factorization of the exponentially odd numbers (A268335).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

Differs from A368472 at n = 1, 154, 610, 707, 762, ... .

Crossrefs

Similar sequences: A368710, A368712, A368713.

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]
  • PARI
    lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = factor(k)[,2]; if(vecprod(e)%2, print1(vecmax(e), ", ")));}

Formula

a(n) = A051903(A268335(n)).
a(n) is odd for n >= 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + 2 * Sum_{k>=1} (1 - Product_{p prime} (1 - 1/(p^(2*k-1)*(p^2+p-1)))) = 1.34877064483679975726... .

A366534 The number of unitary divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 4, 4, 2, 2, 8, 2, 2, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 2, 4, 2, 4, 4, 4, 4, 4, 2, 2, 4, 4, 8, 2, 4, 8, 2, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 2, 8, 2, 4, 8, 4, 2, 2, 8, 4, 2, 8, 4, 4, 4, 8, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Crossrefs

Similar sequences: A366536, A366538.

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(2^(#e), ", ")));

Formula

a(n) = A034444(A268335(n)).

A366535 The sum of unitary divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 9, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 36, 42, 28, 30, 72, 32, 33, 48, 54, 48, 38, 60, 56, 54, 42, 96, 44, 72, 48, 72, 54, 84, 72, 72, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 108, 90, 112
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, OddQ], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));

Formula

a(n) = A034448(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (zeta(4)/d^2) * Product_{p prime} (1 - 2/p^4 + 1/p^5) = 1.92835521961603199612..., d = A065463 is the asymptotic density of the exponentially odd numbers.
The asymptotic mean of the unitary abundancy index of the exponentially odd numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A268335(k) = c * d = 1.35841479521454692063... .

A367417 The squarefree kernels of the exponentially odd numbers: a(n) = A007947(A268335(n)).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 2, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 6, 26, 3, 29, 30, 31, 2, 33, 34, 35, 37, 38, 39, 10, 41, 42, 43, 46, 47, 51, 53, 6, 55, 14, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 22, 89, 91, 93, 94, 95
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Times @@ FactorInteger[n][[;; , 1]]; s /@ Select[Range[200], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, f[i, 1], 0)); }
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(b1, ", "))); }

Formula

a(n) = A367406(n)/A268335(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (zeta(4)/d^2) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 1.25661974314007532208..., and d = A065463 is the asymptotic density of the exponentially odd numbers.

A368979 The number of exponential divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Comments

First differs from A367516 at n = 128, and from A359411 at n = 512.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e/2^IntegerExponent[e, 2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> numdiv(x >> valuation(x, 2)), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A001227(e).
a(n) >= 1, with equality if and only if n is in A138302.
a(n) <= A049419(n), with equality if and only if n is noncomposite (A008578).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=2} (d(k) - d(k-1))/p^k) = 1.13657098749361390865..., where d(k) is the number of odd divisors of k (A001227).
Showing 1-10 of 140 results. Next