A002039 Convolution inverse of A143348.
1, 3, 5, 10, 25, 64, 160, 390, 940, 2270, 5515, 13440, 32735, 79610, 193480, 470306, 1143585, 2781070, 6762990, 16445100, 39987325, 97232450, 236432060, 574915770, 1397981470, 3399360474, 8265943685, 20099618590, 48874630750
Offset: 0
Examples
1 + 3*x + 5*x^2 + 10*x^3 + 25*x^4 + 64*x^5 + 160*x^6 + 390*x^7 + 940*x^8 + ...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. M. Gandhi, On numbers related to partitions of a number, Amer. Math. Monthly, 76 (1969), 1033-1036.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Function.
Programs
-
Mathematica
max = 28; f[x_] := -x / Sum[ k*(-x)^k/(1-(-x)^k), {k, 1, max+1}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 07 2011, after Michael Somos *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / log( eta( -x + x^2 * O(x^n)))', n))} /* Michael Somos, Apr 05 2003 */
Formula
G.f.: -x / (Sum_{k>0} k * (-x)^k / (1 - (-x)^k)) = 1 / (log( f(x) )') where f(-x) = Product_{k>0} (1 - x^k) is one of Ramanujan's theta functions. - Michael Somos, Apr 08 2003
a(n) ~ c * d^n, where d = -1/A143441 = 2.43161993449532399475429572773256778... and c = 0.765603960074106532799232452562411022387973764575133091283490410339311... - Vaclav Kotesovec, Jun 02 2018
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * sigma(k+1) * a(n-k). - Ilya Gutkovskiy, May 27 2020
Comments