cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002056 Number of diagonal dissections of a convex n-gon into n-5 regions.

Original entry on oeis.org

1, 14, 120, 825, 5005, 28028, 148512, 755820, 3730650, 17978180, 84987760, 395482815, 1816357725, 8250123000, 37119350400, 165645101160, 733919156190, 3231337461300, 14147884842000, 61636377252450, 267325773340626, 1154761882042824, 4969989654817600
Offset: 6

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n-5,n-5,1,1,1) (see Stanley reference). - Emeric Deutsch, May 20 2004
Number of increasing tableaux of shape (n-2,n-2) with largest entry 2n-7. An increasing tableau is a semistandard tableau with strictly increasing rows and columns, and set of entries an initial segment of the positive integers. - Oliver Pechenik, May 02 2014
Number of noncrossing partitions of 2n-7 into n-5 blocks all of size at least 2. - Oliver Pechenik, May 02 2014

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    [Binomial(n-3, 3)*Binomial(2*n-7, n-6)/(n-5): n in [6..30]]; // Vincenzo Librandi, Feb 18 2020
  • Maple
    A002056:=n->binomial(n-3,3)*binomial(2*n-7,n-6)/(n-5): seq(A002056(n), n=6..40); # Wesley Ivan Hurt, Apr 12 2017
  • Mathematica
    Table[Binomial[n - 3, 3] Binomial[2n - 7, n - 6]/(n - 5), {n, 6, 50}] (* Indranil Ghosh, Apr 11 2017 *)

Formula

a(n) = binomial(n-3, 3)*binomial(2n-7, n-6)/(n-5).
G.f.: (x-1+(1-11*x+40*x^2-50*x^3+10*x^4)*(1-4*x)^(-5/2))/(2*x^5). - Mark van Hoeij, Oct 25 2011
a(n) ~ 4^n*n^(3/2)/(768*sqrt(Pi)). - Ilya Gutkovskiy, Apr 11 2017
D-finite with recurrence: -(n-1)*(n-5)*(n-6)*a(n) +2*(2*n-7)*(n-3)*(n-4)*a(n-1)=0. - R. J. Mathar, Feb 16 2020