A002103 Coefficients of expansion of Jacobi nome q in certain powers of (1/2)*(1 - sqrt(k')) / (1 + sqrt(k')).
1, 2, 15, 150, 1707, 20910, 268616, 3567400, 48555069, 673458874, 9481557398, 135119529972, 1944997539623, 28235172753886, 412850231439153, 6074299605748746, 89857589279037102, 1335623521633805028
Offset: 0
Examples
G.f. = 1 + 2*x + 15*x^2 + 150*x^3 + 1707*x^4 + 20910*x^5 + 268616*x^6 + 3567400*x^7 + ... Jacobi nome q = x + 2x^5 + 15x^9 + 150x^13 + ... where x = q - 2q^5 + 5q^9 - 10q^13 + ... coefficients from A079006. The series reversion of q = x + 2*x^5 + 15*x^9 + 150*x^13 + 1707*x^17 + ... equals (x + x^9 + x^25 + x^49 + ...)/(1 + 2*x^4 + 2*x^16 + 2*x^36 + 2*x^64 + ...).
References
- King, R. B., and E. R. Canfield. "Icosahedral symmetry and the quintic equation." Computers & Mathematics with Applications 24.3 (1992): 13-28. See Eq. (4.28).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- F. Tricomi, Elliptische Funktionen (German translation by M. Krafft of: Funzioni ellittiche), Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1948, p. 176, eq. (3.88).
- Z. X. Wang and D. R. Guo, Special Functions, World Scientific Publishing, 1989, page 512.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..800 (terms 0..200 from Vincenzo Librandi)
- J. N. Bramhall, An iterative method for inversion of power series, Comm. ACM 4 1961 317-318.
- H. R. P. Ferguson, D. E. Nielsen and G. Cook, A partition formula for the integer coefficients of the theta function nome, Math. Comp., 29 (1975), 851-855.
- H. E. Fettis, Note on the computation of Jacobi's Nome and its inverse, Computing, 4 (1969), 202-206.
- A. Fletcher, Guide to tables of elliptic functions, Math. Tables Other Aids Computation, 3 (1948), 229-281, Section III, p. 234. MR0030295 (10,741b)
- R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Dritter Teil, Springer-Verlag, 2012, p. 3, eq. (6)
- C. Hermite, Annotated scan of a page from the Oeuvres, together with a page from Math. Tables Aids Comp., Vol. 3, 1948 that refers to it.
- A. Kneser, Neue Untersuchung einer Reihe aus der Theorie der elliptischen Funktionen, J. reine u. angew. Math. 157, 1927, 209 - 218, p.218.
- A. N. Lowan, G. Blanch and W. Horenstein, On the inversion of the q-series associated with Jacobian elliptic functions, Bull. Amer. Math. Soc., 48 (1942), 737-738.
- H. P. Robinson, Letter to N. J. A. Sloane, Oct 07, 1976
- R. E. Shafer, Review of Fettis (1969), Computing Reviews, July 1970, page 401 [Annotated scanned copy]
Programs
-
Mathematica
max = 18; A079006[n_] := SeriesCoefficient[ Product[(1+x^(k+1)) / (1+x^k), {k, 1, n, 2}]^2, {x, 0, n}]; A079006[0] = 1; sq = Series[ Sum[ A079006[n]*q^(4n+1), {n, 0, max}], {q, 0, 4max}]; coes = CoefficientList[ InverseSeries[ sq, x], x]; a[n_] := coes[[4n + 2]]; Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, Nov 08 2011, after Michael Somos *) a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (EllipticNomeQ[ 16 x] / x)^(1/4), {x, 0, n}]]; (* Michael Somos, Jul 13 2013 *) a[ n_] := With[{m = 4 n + 1}, If[ n < 0, 0, SeriesCoefficient[ InverseSeries[ Series[ q (QPochhammer[ q^16] / QPochhammer[-q^4])^2, {q, 0, m}], x], {x, 0, m}]]]; (* Michael Somos, Jul 13 2013 *) a[ n_] := With[{m = 4 n + 1}, SeriesCoefficient[ InverseSeries[ Series[ 1/2 EllipticTheta[ 2, 0, x^4] / EllipticTheta[ 3, 0, x^4], {x, 0, m}]], {x, 0, m}]]; (* Michael Somos, Apr 14 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, n = 4*n + 1; A = O(x^n); polcoeff( serreverse( x * (eta(x^4 + A) * eta(x^16 + A)^2 / eta(x^8 + A)^3)^2), n))};
-
PARI
{a(n)=local(A,N=sqrtint(n)+1); A=serreverse(sum(n=1,N,x^((2*n-1)^2))/(1+2*sum(n=1,N,x^(4*n^2)) +O(x^(4*n+4)))); polcoeff(A,4*n+1)} \\ Paul D. Hanna, Jan 07 2014
Formula
a(n) = Sum {1<=k<=n} (-1)^k Sum { (4n+k)! C_1^b_1 ... C_n^b_n / (4n+1)! b_1! ... b_n! }, where the inner sum is over all partitions k = b_1 + ... + b_n, n = Sum i*b_i, b_i >= 0 and C_0=1, C_1=-2, C_2=5, C_3=-10 ... is given by (-1)^n*A001936(n).
G.f.: Series_Reversion( (theta_3(x) - theta_3(-x)) / (4*theta_3(x^4)) ) = Sum_{n>=0} a(n)*x^(4*n+1), where theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2). - Paul D. Hanna, Jan 07 2014
Comments