cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A079006 Expansion of q^(-1/4) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^2 in powers of q.

Original entry on oeis.org

1, -2, 5, -10, 18, -32, 55, -90, 144, -226, 346, -522, 777, -1138, 1648, -2362, 3348, -4704, 6554, -9056, 12425, -16932, 22922, -30848, 41282, -54946, 72768, -95914, 125842, -164402, 213901, -277204, 357904, -460448, 590330, -754368, 960948, -1220370
Offset: 0

Views

Author

Michael Somos, Dec 22 2002

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The Lagrange series reversion of Sum_{n >= 1} a(n-1)*x^n is Sum_{n >= 1} A002103(n-1)*x^n. See the example in A002103. - Wolfdieter Lang, Jul 09 2016

Examples

			G.f. A(x) = 1 - 2*x + 5*x^2 - 10*x^3 + 18*x^4 - 32*x^5 + 55*x^6 - 90*x^7 + 144*x^8 + ...
G.f. B(q) = q * A(q^4) = q - 2*q^5 + 5*q^9 - 10*q^13 + 18*q^17 - 32*q^21 + 55*q^25 - 90*q^29 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[(1 + x^(k + 1)) / (1 + x^k), {k, 1, n, 2}]^2, {x, 0, n}]; (* Michael Somos, Jul 08 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ (m / 16 / q)^(1/4), {q, 0, n}]]; (* Michael Somos, Jul 08 2011 *)
    QP = QPochhammer; s = (QP[q]*(QP[q^4]^2/QP[q^2]^3))^2 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 23 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(2*k))^4 / (1+x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^4]^2 / QPochhammer[ -x]^2, {x, 0, n}]; (* Michael Somos, Apr 19 2017 *)
  • PARI
    {a(n) = my(N, A); if( n<0, 0, N = (sqrtint(16*n + 1) + 1)\2; A = contfracpnqn( matrix(2, N, i, j, if( i==1, if( j<2, 1 + O(x^(N^2 + N)), (x^(j-1) + x^(3*j - 3))^2), 1 - x^(4*j - 2)))); polcoeff( A[2,1] / A[1,1], 4*n))}; /* Michael Somos, Sep 01 2005 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m = 1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A / (1 + 4 * x*A^2))); polcoeff(A, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^2, n))};

Formula

a(n) = (2/n)*Sum_{k=1..n} (-1)^k*A046897(k)*a(n-k). - Vladeta Jovovic, Dec 24 2002
Expansion of q^(-1/4) * (1/2) * k^(1/2) in powers of q, where k^2 is the parameter and q the Jacobi nome of elliptic functions.
Expansion of (1/(2*q)) * (1 - sqrt(k')) / (1 + sqrt(k')) in powers of q^4, where k'^2 is the complementary parameter and q the Jacobi nome of elliptic functions. See the Fricke reference.
Expansion of psi(x^2) / phi(x) = psi(x)^2 / phi(x)^2 = psi(x^2)^2 / psi(x)^2 = psi(-x)^2 / phi(-x^2)^2 = chi(-x)^2 / chi(-x^2)^4 = 1 / (chi(x)^2 * chi(-x^2)^2) = 1 / (chi(x)^4 * chi(-x)^2) = f(-x^4)^2 / f(x)^2 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [-2, 4, -2, 0, ...].
G.f. A(x) satisfies A(x)^2 = A(x^2) / (1 + 4 * x * A(x^2)^2). - Michael Somos, Mar 19 2004
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 * (1 + 4 * v^2) - v. - Michael Somos, Jul 09 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u3 * (u6 + u2)^2 - u2*u6. - Michael Somos, Jul 09 2005
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k-1)))^2 = (Product_{k>0} (1 - x^(4*k)) / (1 - (-x)^k))^2.
Expansion of continued fraction 1 / (1 - x^2 + (x^1 + x^3)^2 / (1 - x^6 + (x^2 + x^6)^2 / (1 - x^10 + (x^3 + x^9)^2 / ...))) in powers of x^4. - Michael Somos, Sep 01 2005
Given g.f. A(x), then B(q) = 2 * q * A(q^4) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4 . - Michael Somos, Jan 01 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A189925.
Convolution inverse of A029839. Convolution square of A083365. a(n) = (-1)^n * A001936(n).
G.f.: 1/Q(0), where Q(k)= 1 - x^(k+1/2) + (x^((k+1)/4) + x^((3*k+3)/4))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 02 2013
a(n) ~ (-1)^n * exp(Pi*sqrt(n)) / (2^(7/2)*n^(3/4)). - Vaclav Kotesovec, Jul 04 2016
Given g.f. A(x), and B(x) is the g.f. for A008441, then A(x) = B(x^2) / B(x) and A(x) * A(x^2) * A(x^4) * ... = 1 / B(x). - Michael Somos, Apr 20 2017
Expansion of continued fraction 1 / (1 - x^1 + x^1*(1 + x^1)^2 / (1 - x^3 + x^2*(1 + x^2)^2 / (1 - x^5 + x^3*(1 + x^3)^2 / ...))) in powers of x^2. - Michael Somos, Apr 20 2017
a(n) = A208933(4*n+1) - A215348(4*n+1) (conjectured). - Thomas Baruchel, May 14 2018
A(x^4) = (1/(m*x)) * ( chi(x)^m - chi(-x)^m ) / ( chi(x)^m + chi(-x)^m ) at m = 2, where chi(x) = Product_{i >= 0} (1 + x^(2*i+1)) is the g.f. of A000700. The formula gives generating functions related to A092869 when m = 1 and A001938 (also A093160) when m = 4. - Peter Bala, Sep 23 2023

A005797 Expansion of Jacobi nome q in terms of parameter m/16.

Original entry on oeis.org

0, 1, 8, 84, 992, 12514, 164688, 2232200, 30920128, 435506703, 6215660600, 89668182220, 1305109502496, 19138260194422, 282441672732656, 4191287776164504, 62496081197436736, 935823746406530603, 14065763582458332888, 212122153814497767004, 3208590886304243284640
Offset: 0

Views

Author

Keywords

Comments

For a faster convergent series see A002103, where k' = sqrt(1 - k^2). - Wolfdieter Lang, Jul 14 2016
The Ansatz technique of A308835, A308836, and A308837 also works to produce the coefficients of this sequence from the ODE: T-d/dx(4*(1-x)*x*dT/dx)=0. - Bradley Klee, Jul 03 2019

Examples

			G.f. = x + 8*x^2 + 84*x^3 + 992*x^4 + 12514*x^5 + 164688*x^6 + 2232200*x^7 + ...
Given g.f. A(x),  then q = exp(-Pi sqrt(6)) = A( m/16 ) where m = ((2-sqrt(3))*(sqrt(3)-sqrt(2)))^2. - _Michael Somos_, Oct 30 2019
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 591.
  • B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054.
  • C. L. Mallows, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Reversion of A005798. Cf. A002639. Other nomes: A308835, A308836, A308837.

Programs

  • Maple
    a:= n-> coeff(series(EllipticNome(4*sqrt(x)), x, n+1), x, n):
    seq(a(n), n=0..17);  # Thomas Richard, Aug 03 2022
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticNomeQ[ 16 x], {x, 0 ,n}] (* Michael Somos, Jul 11 2011 *)
  • PARI
    {a(n) = if( n < 1, 0, polcoeff( serreverse( x * prod(k=1, n-1, (1 + x^k)^(-1)^k, 1 + x * O(x^n))^8), n))} /* Michael Somos, Jul 19 2002 */
    
  • PARI
    {a(n) = my(A, m); if( n < 1, 0, m=1; A = x + O(x^2); while( m < n, m*=2; A = sqrt( subst(A, x, x^2)); A /= (1 + 4*A)^2); polcoeff( serreverse(A), n))} /* Michael Somos, Mar 18 2003 */

Formula

G.f.: q = q(m) = Sum_{n>=0} a(n) * (m/16)^n.
G.f.: exp( -Pi * agm(1, sqrt(1 - 16 * x) ) / agm(1, sqrt( 16*x ) ) ).

A002639 Numerators of expansion of Jacobi nome q in parameter m.

Original entry on oeis.org

0, 1, 1, 21, 31, 6257, 10293, 279025, 483127, 435506703, 776957575, 22417045555, 40784671953, 9569130097211, 17652604545791, 523910972020563, 976501268709949, 935823746406530603, 1758220447807291611
Offset: 0

Views

Author

Keywords

Examples

			q = 1/16*m + 1/32*m^2 + 21/1024*m^3 + 31/2048*m^4 + 6257/524288*m^5 + ...
		

References

  • Guide to Tables, Math. Tables Other Aids Computation, 3 (1948), Section III, p. 234.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A119349 (denominators), A002103 (where there are further references), A005797.

Programs

  • Maple
    A002639 := proc(n::integer)
        local z;
        # coeftayl(EllipticNome(z),z=0,n) ; # very slow
        taylor(EllipticNome(z),z=0,2*n+1) ;
        convert(%,polynom) ;
        coeff(%,z,2*n) ;
        numer(%) ;
    end proc:
    seq(A002639(n),n=0..10) ; # R. J. Mathar, Mar 26 2025
  • Mathematica
    Numerator[ CoefficientList[ Series[ EllipticNomeQ[m], {m, 0, 18}], m]] (* Jean-François Alcover, Sep 21 2011 *)
  • PARI
    {a(n) = if( n<1, 0, numerator( polcoeff( serreverse( x * prod(k=1, n, (1 + x^k)^(-1)^k, 1 +x * O(x^n))^8), n) / 4^n))}

Extensions

Edited by Michael Somos, Aug 09 2002

A274659 Triangle entry T(n, m) gives the m-th contribution T(n, m)*sin((2*m+1)*v) to the coefficient of q^n in the Fourier expansion of Jacobi's elliptic sn(u|k) function when expressed in the variables v = u/(2*K(k)/Pi) and q, the Jacobi nome, written as series in (k/4)^2. K is the real quarter period of elliptic functions.

Original entry on oeis.org

1, 1, 1, -1, 0, 1, -1, -2, 0, 1, 2, 1, -2, 0, 1, 2, 3, 0, -2, 0, 1, -4, -2, 3, 0, -2, 0, 1, -4, -5, 1, 3, 0, -2, 0, 1, 7, 3, -6, 0, 3, 0, -2, 0, 1, 7, 9, -2, -6, 0, 3, 0, -2, 0, 1, -11, -5, 11, 1, -6, 0, 3, 0, -2, 0, 1, -11, -15, 3, 11, 0, -6, 0, 3, 0, -2, 0, 1, 17, 9, -17, -2, 11, 0, -6, 0, 3, 0, -2, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jul 18 2016

Keywords

Comments

If one takes the row polynomials as R(n, x) = Sum_{m=0..n} T(n, m)*x^(2*m+1), n >= 0, Jacobi's elliptic sn(u|k) function in terms of the new variables v and q becomes sn(u|k) = Sum_{n>=0} R(n, x)*q^n, if one replaces in R(n, x) x^j by sin(j*v).
v=v(u,k^2) and q=q(k^2) are computed with the help of A038534/A056982 for (2/Pi)*K and A002103 for q expanded in powers of (k/4)^2.
A test for sn(u|k) with u = 1, k = sqrt(1/2), that is v approximately 0.8472130848 and q approximately 0.04321389673, with rows n=0..10 (q powers not exceeding 10) gives 0.8030018002 to be compared with sn(1|sqrt(1/2)) approximately 0.8030018249.
For the derivation of the Fourier series formula of sn given in Abramowitz-Stegun (but there the notation sn(u|m=k^2) is used for sn(u|k)) see, e.g., Whittaker and Watson, p. 511 or Armitage and Eberlein, Exercises on p. 55.
For the cn expansion see A274661.
See also the W. Lang link, equations (34) and (35).

Examples

			The triangle T(n, m) begins:
      m  0   1  2  3  4  5  6  7  8  9 10 11
n\ 2m+1  1   3  5  7  9 11 13 15 17 19 21 23
0:       1
1:       1   1
2:      -1   0  1
3:      -1  -2  0  1
4:       2   1 -2  0  1
5:       2   3  0 -2  0  1
6:      -4  -2  3  0 -2  0  1
7:      -4  -5  1  3  0 -2  0  1
8:       7   3 -6  0  3  0 -2  0  1
9:       7   9 -2 -6  0  3  0 -2  0  1
10:    -11  -5 11  1 -6  0  3  0 -2  0  1
11:    -11 -15  3 11  0 -6  0  3  0 -2  0  1
...
T(4, 0) = 2 from the x^1 term in b(0, x)*a(4) + b(2, x)*a(2) + b(4, x)*a(0), that is x^1*3 + x^1*(-2) + x^1*1 = +2*x^1.
n=4: R(4, x) = 2*x^1 + 1*x^3 - 2*x^5 + 0*x^7 + 1*x^9, that is the sn(u|k) contribution of order q^4 in the new variables v and q is (2*sin(1*v) + 1*sin(3*v) - 2*sin(5*v) + 1*sin(9*v))*q^4.
		

References

  • J. V. Armitage and W. F. Eberlein, Elliptic Functions, London Mathematical Society, Student Texts 67, Cambridge University Press, 2006.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.

Crossrefs

Formula

T(n, m) = [x^(2*m+1)]Sum_{j=0..n} b(j, x)*a(n-j), with a(k) = A274621(k/2) if k is even and a(k) = 0 if k is odd, and b(j, x) = Sum_{r | 2*j+1} x^r = Sum_{k=1..A099774(j+1)} x^(A274658(j, k)), for j >= 0.

A293725 Numbers k such that c(k,0) = c(k,1), where c(k,d) = number of d's in the first k digits of the base-2 expansion of sqrt(2).

Original entry on oeis.org

2, 10, 20, 24, 28, 32, 318, 328, 330, 334, 336, 608, 622, 636, 638, 674, 676, 678, 680, 682, 826, 828, 832, 836, 838, 842, 844, 846, 848, 850, 852, 856, 858, 876, 880, 884, 886, 898, 906, 908, 918, 920, 928, 930, 942, 944, 946, 948, 950, 962, 964, 966, 968
Offset: 1

Views

Author

Clark Kimberling, Oct 16 2017

Keywords

Comments

This sequence together with A293727 and A293728 partition the positive integers.

Examples

			In base 2, sqrt(2) = 1.0110101000001001111001..., so that initial segments 1.0; 1.011010100..., of lengths 2,10,... have the same number of 0's and 1's.
		

Crossrefs

Programs

  • Mathematica
    z = 300; u = N[Sqrt[2], z]; d = RealDigits[u, 2][[1]];
    t[n_] := Take[d, n]; c[0, n_] := Count[t[n], 0]; c[1, n_] := Count[t[n], 1];
    Table[{n, c[0, n], c[1, n]}, {n, 1, 100}]
    u = Select[-1 + Range[z], c[0, #] == c[1, #] &]  (* A293725 *)
    u/2  (* A293726 *)
    Select[-1 + Range[z], c[0, #] < c[1, #] &]  (* A293727 *)
    Select[-1 + Range[z], c[0, #] > c[1, #] &]  (* A293728 *)

A293726 a(n) = (1/2)*A293725(n).

Original entry on oeis.org

1, 5, 10, 12, 14, 16, 159, 164, 165, 167, 168, 304, 311, 318, 319, 337, 338, 339, 340, 341, 413, 414, 416, 418, 419, 421, 422, 423, 424, 425, 426, 428, 429, 438, 440, 442, 443, 449, 453, 454, 459, 460, 464, 465, 471, 472, 473, 474, 475, 481, 482, 483, 484
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 300; u = N[Sqrt[2], z]; d = RealDigits[u, 2][[1]];
    t[n_] := Take[d, n]; c[0, n_] := Count[t[n], 0]; c[1, n_] := Count[t[n], 1];
    Table[{n, c[0, n], c[1, n]}, {n, 1, 100}]
    u = Select[Range[z], c[0, #] == c[1, #] &]  (* A293725 *)
    u/2  (* A293726 *)
    Select[Range[z], c[0, #] < c[1, #] &]  (* A293727 *)
    Select[Range[z], c[0, #] > c[1, #] &]  (* A293728 *)

A293727 Numbers k such that c(k,0) < c(k,1), where c(k,d) = number of d's in the first k digits of the base-2 expansion of sqrt(2).

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 9, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2017

Keywords

Comments

This sequence together with A293725 and A293728 partition the nonnegative integers.

Crossrefs

Programs

  • Mathematica
    z = 300; u = N[Sqrt[2], z]; d = RealDigits[u, 2][[1]];
    t[n_] := Take[d, n]; c[0, n_] := Count[t[n], 0]; c[1, n_] := Count[t[n], 1];
    Table[{n, c[0, n], c[1, n]}, {n, 1, 100}]
    u = Select[Range[z], c[0, #] == c[1, #] &]  (* A293725 *)
    u/2  (* A293726 *)
    Select[Range[z], c[0, #] < c[1, #] &]  (* A293727 *)
    Select[Range[z], c[0, #] > c[1, #] &]  (* A293728 *)

A293728 Numbers k such that c(k,0) > c(k,1), where c(k,d) = number of d's in the first k digits of base-2 expansion of sqrt(2).

Original entry on oeis.org

11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 335, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 675, 677, 683, 684, 685, 686, 687, 688, 689, 690
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2017

Keywords

Comments

This sequence together with A293725 and A293727 partition the nonnegative integers.

Crossrefs

Programs

  • Mathematica
    z = 300; u = N[Sqrt[2], z]; d = RealDigits[u, 2][[1]];
    t[n_] := Take[d, n]; c[0, n_] := Count[t[n], 0]; c[1, n_] := Count[t[n], 1];
    Table[{n, c[0, n], c[1, n]}, {n, 1, 100}]
    u = Select[Range[z], c[0, #] == c[1, #] &]  (* A293725 *)
    u/2  (* A293726 *)
    Select[Range[z], c[0, #] < c[1, #] &]  (* A293727 *)
    Select[Range[z], c[0, #] > c[1, #] &]  (* A293728 *)

A227503 q = x * exp( 8 * (Sum_{k>0} a(k) * x^k / k)) where x = m/16, q is the elliptic nome and m = k^2 is the parameter.

Original entry on oeis.org

1, 13, 184, 2701, 40456, 613720, 9391936, 144644749, 2238445480, 34772271208, 541801226176, 8463116730712, 132472258939840, 2077232829015616, 32621327116946944, 512963507737401997, 8075477240446327528, 127258797512376887176, 2007225253307641799872
Offset: 1

Views

Author

Michael Somos, Jul 13 2013

Keywords

Comments

The Fricke reference has equation Pi i omega / 4 = log (sqrt(k) / 2) + 2 (sqrt(k) / 2)^4 + 13 (sqrt(k) / 2)^8 + 368/3 (sqrt(k) / 2)^12 + 2701/2 (sqrt(k) / 2)^16 + ... .
This can be written (with Pi i omega / 4 = log(q)/4) as (log(q) - log(k^2/16)) / (8*k^2/16) = Sum_{n >= 0} (a(n+1)/(n+1))*(k^2/16)^n. See also the Kneser reference, p. 216. Note that the rational coefficients a(n+1)/(n+1) are not reduced to lowest terms. For the reduced rational coefficients see A274345 / A274346. - Wolfdieter Lang, Jun 30 2016

Examples

			G.f. = x + 13*x^2 + 184*x^3 + 2701*x^4 + 40456*x^5 + 613720*x^6 + 9391936*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, n SeriesCoefficient[ Log[ EllipticNomeQ[ 16 x] / x] / 8, {x, 0, n}]];
  • PARI
    {a(n) = local(A); if( n<1, 0, A = x * O(x^n); n * polcoeff( log( serreverse( x * (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^8 ) / x) / 8, n))};

A274661 Triangle read by rows: T(n, m) gives the m-th contribution T(n, m)*cos((2*m+1)*v) to the coefficient of q^n in the Fourier expansion of Jacobi's elliptic cn(u|k) function when expressed in the variables v = u/(2*K(k)/Pi) and q, the Jacobi nome, written as series in (k/4)^2. K is the real quarter period of elliptic functions.

Original entry on oeis.org

1, -1, 1, -1, 0, 1, 1, -2, 0, 1, 2, -1, -2, 0, 1, -2, 3, 0, -2, 0, 1, -4, 2, 3, 0, -2, 0, 1, 4, -5, -1, 3, 0, -2, 0, 1, 7, -3, -6, 0, 3, 0, -2, 0, 1, -7, 9, 2, -6, 0, 3, 0, -2, 0, 1, -11, 5, 11, -1, -6, 0, 3, 0, -2, 0, 1, 11, -15, -3, 11, 0, -6, 0, 3, 0, -2, 0, 1, 17, -9, -17, 2, 11, 0, -6, 0, 3, 0, -2, 0, 1, -17, 23, 6, -18, -1, 11, 0, -6, 0, 3, 0, -2, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jul 27 2016

Keywords

Comments

If one takes the row polynomials as P(n, x) = Sum_{m=0..n} T(n, m)*x^m, n >= 0, Jacobi's elliptic function cn(u|k) in terms of the new variables v and q becomes cn(u|k) = Sum_{n>=0} P(n, x)*q^n, if in P(n, x) one replaces x^j by cos((2*j+1)*v).
v=v(u,k^2) and q=q(k^2) are computed with the help of A038534/A056982 for (2/Pi)*K and A002103 for q expanded in powers of (k/4)^2.
A test for cn(u|k) with u = 1, k = sqrt(1/2), that is v approximately 0.8472130848 and q approximately 0.04321389673, with rows n=0..10 (q powers not exceeding 10) gives 0.5959766014 to be compared with cn(1|sqrt(1/2)) approximately 0.5959765676.
For the derivation of the Fourier series formula of cn given in Abramowitz-Stegun (but there the notation sn(u|m=k^2) is used for sn(u|k)) see, e.g., Whittaker and Watson, p. 511 or Armitage and Eberlein, Exercises on p. 55.
For sn see A274659 (differently signed triangle).
The sum of entries in row n is P(n, 1) = A000007(n): 1, repeat 0. Proof: due to the g.f. identity (from the convolution)
Sum_{n >= 0} x^n/(1 + x^(2*n+1)) = (Sum_{n >= 0} x^(n*(n+1)))^2.
This is proved by bisecting the g.f. on the l.h.s. which generates c(n, 1) = (-1)^n*Sum_{2*r+1 | 2*n+1} (-1)^n. The part with n = 2*k+1 vanishes due to r_2(4*k+1)/4 = 0, where r_2(n) is the number of solutions of n as a sum of two squares. See the Grosswald reference. The part with n = 2*k becomes Sum_{k >= 0} x^(2*k) r_2(4*k+1)/4 which is the r.h.s. See A008441, the Broadhurst Oct 20 2002 comment.
For another version of this expansion of cn see A275791.
See also the W. Lang link, eqs. (43) and (44). - Wolfdieter Lang, Aug 26 2016

Examples

			The triangle T(n, m) begins:
      m  0   1  2  3  4  5  6  7  8  9 10 11
n\ 2m+1  1   3  5  7  9 11 13 15 17 19 21 23
0:       1
1:      -1   1
2:      -1   0  1
3:       1  -2  0  1
4:       2  -1 -2  0  1
5:      -2   3  0 -2  0  1
6:      -4   2  3  0 -2  0  1
7:       4  -5 -1  3  0 -2  0  1
8:       7  -3 -6  0  3  0 -2  0  1
9:      -7   9  2 -6  0  3  0 -2  0  1
10:    -11   5 11 -1 -6  0  3  0 -2  0  1
11:     11 -15 -3 11  0 -6  0  3  0 -2  0  1
...
n = 4: c(0, x)*a(4) + c(2, x)*a(2) + c(4, x)*a(0) = (+x^1)*3 +  (+x^1 + x^5)*(-2) + (+x^1 - x^3 + x^9)*1 = +2*x^1 - x^3 - 2*x^5 + 0*x^7 + x^9. Hence row n=4 is 2, -1, -2, 0, 1.
From A274660, row n = 4: c(4, x) = +x^1 - x^3 +x^9.
n = 4: P(4, x) = 2 - 1*x^1 - 2*x^2 + 1*x^4, that is the contribution of order q^4 to cn in the new variables is (2*cos(v)  - 1*cos(3*v) - 2*cos(5*v) + 1*cos(9*v))*q^4.
		

References

  • J. V. Armitage and W. F. Eberlein, Elliptic Functions, London Mathematical Society, Student Texts 67, Cambridge University Press, 2006.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 15, Theorem 3.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.

Crossrefs

Formula

T(n, m) = [x^(2*m+1)]Sum_{j=0..n} c(j, x)*a(n-j), with a(k) = A274621(k/2) if k is even and a(k) = 0 if k is odd, and c(j, x) = (-1)^j*Sum_{2*r+1 | 2*j+1} (-1)^r*x^(2*r+1) = Sum_{k=1..A099774(j+1)} sign(A274660(j, k))*x^(abs(A274660(j, k))), for j >= 0.
Showing 1-10 of 12 results. Next