cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002115 Generalized Euler numbers.

Original entry on oeis.org

1, 1, 19, 1513, 315523, 136085041, 105261234643, 132705221399353, 254604707462013571, 705927677520644167681, 2716778010767155313771539, 14050650308943101316593590153, 95096065132610734223282520762883, 823813936407337360148622860507620561
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t=0,
           add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
           add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
        end:
    a:= n-> b(3*n, 0$2):
    seq(a(n), n=0..17);  # Alois P. Heinz, Aug 12 2019
    # Alternative:
    h := 1 / hypergeom([], [1/3, 2/3], (-x/3)^3): ser := series(h, x, 40):
    seq((3*n)! * coeff(ser, x, 3*n), n = 0..13); # Peter Luschny, Mar 13 2023
  • Mathematica
    max = 12; f[x_] := 1/(1/3*Exp[-x^(1/3)] + 2/3*Exp[1/2*x^(1/3)]*Cos[1/2*3^(1/2)* x^(1/3)]); CoefficientList[Series[f[x], {x, 0, max}], x]*(3 Range[0, max])! (* Jean-François Alcover, Sep 16 2013, after Vladeta Jovovic *)

Formula

E.g.f.: Sum_{n >= 0} a(n)*x^n/(3*n)! = 1/((1/3)*exp(-x^(1/3)) + (2/3)*exp((1/2)*x^(1/3))*cos((1/2)*3^(1/2)*x^(1/3))). - Vladeta Jovovic, Feb 13 2005
E.g.f.: 1/U(0) where U(k) = 1 - x/(6*(6*k+1)*(3*k+1)*(2*k+1) - 6*x*(6*k+1)*(3*k+1)*(2*k+1)/(x - 12*(6*k+5)*(3*k+2)*(k+1)/U(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2012
Alternating row sums of A278073. - Peter Luschny, Sep 07 2017
a(n) = A178963(3n). - Alois P. Heinz, Aug 12 2019
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(3*n,3*k) * a(n-k). - Ilya Gutkovskiy, Jan 27 2020
a(n) = (3*n)! * [x^(3*n)] hypergeom([], [1/3, 2/3], (-x/3)^3)^(-1). - Peter Luschny, Mar 13 2023

Extensions

More terms from Vladeta Jovovic, Feb 13 2005