cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002127 MacMahon's generalized sum of divisors function.

Original entry on oeis.org

1, 3, 9, 15, 30, 45, 67, 99, 135, 175, 231, 306, 354, 465, 540, 681, 765, 945, 1040, 1305, 1386, 1695, 1779, 2205, 2290, 2754, 2835, 3438, 3480, 4185, 4272, 5076, 5004, 6100, 5985, 7155, 7154, 8325, 8190, 9840, 9471, 11241, 11055, 12870, 12420, 14911
Offset: 3

Views

Author

Keywords

Comments

Number of partitions of n with two designated summands. For example: a(5) = 9 because there are 9 partitions of 5 with two designated summands: [4'+ 1'], [3'+ 2'], [3'+ 1'+ 1], [3'+ 1 + 1'], [2'+ 2 + 1'], [2 + 2'+ 1'], [2'+ 1'+ 1 + 1], [2'+ 1 + 1'+ 1], [2'+ 1 + 1 + 1']. - Omar E. Pol, Jul 23 2025

Examples

			x^3 + 3*x^4 + 9*x^5 + 15*x^6 + 30*x^7 + 45*x^8 + 67*x^9 + 99*x^10 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060043.
Cf. A002128.
Column 2 of A385001.

Programs

  • Mathematica
    A002127[n_] := (DivisorSigma[3, n] - (2*n - 1)*DivisorSigma[1, n])/8;
    Array[A002127, 50, 3] (* Paolo Xausa, Jul 04 2025, after Michael Somos's PARI *)
  • PARI
    {a(n) = if( n<1, 0, ( sigma( n, 3) - (2*n - 1) * sigma(n) ) / 8)} /* Michael Somos, Jan 10 2012 */

Formula

G.f.: (Sum_{k>=0} (-1)^k * (2*k + 1) * binomial( k+2, 4) * x^( k*(k+1) / 2 )) / (5 * Sum_{k>=0} (-1)^k * (2*k + 1) * x^( k*(k+1) / 2 )). - Michael Somos, Jan 10 2012
a(n) = (n^2 - 3*n + 2) * A000203(n) / 8 iff n is an odd prime (see Craig link et al.).
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / (4!*5!). - Vaclav Kotesovec, Aug 01 2025

Extensions

More terms from Vladeta Jovovic, Nov 11 2001