cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A010051 Characteristic function of primes: 1 if n is prime, else 0.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Keywords

Comments

The following sequences all have the same parity (with an extra zero term at the start of a(n)): a(n), A061007, A035026, A069754, A071574. - Jeremy Gardiner, Aug 09 2002
Hardy and Wright prove that the real number 0.011010100010... is irrational. See Nasehpour link. - Michel Marcus, Jun 21 2018
The spectral components (excluding the zero frequency) of the Fourier transform of the partial sequences {a(j)} with j=1..n and n an even number, exhibit a remarkable symmetry with respect to the central frequency component at position 1 + n/4. See the Fourier spectrum of the first 2^20 terms in Links, Comments in A289777, and Conjectures in A001223 of Sep 01 2019. It also appears that the symmetry grows with n. - Andres Cicuttin, Aug 23 2020

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 3.
  • V. Brun, Über das Goldbachsche Gesetz und die Anzahl der Primzahlpaare, Arch. Mat. Natur. B, 34, no. 8, 1915.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, London, 1975.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 65.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 132.

Crossrefs

Cf. A051006 (constant 0.4146825... (base 10) = 0.01101010001010001010... (base 2)), A001221 (inverse Moebius transform), A143519, A156660, A156659, A156657, A059500, A053176, A059456, A072762.
First differences of A000720, so A000720 gives partial sums.
Column k=1 of A117278.
Characteristic function of A000040.
Cf. A008683.

Programs

  • Haskell
    import Data.List (unfoldr)
    a010051 :: Integer -> Int
    a010051 n = a010051_list !! (fromInteger n-1)
    a010051_list = unfoldr ch (1, a000040_list) where
       ch (i, ps'@(p:ps)) = Just (fromEnum (i == p),
                                  (i + 1, if i == p then ps else ps'))
    -- Reinhard Zumkeller, Apr 17 2012, Sep 15 2011
    
  • Magma
    s:=[]; for n in [1..100] do if IsPrime(n) then s:=Append(s,1); else s:=Append(s,0); end if; end for; s;
    
  • Magma
    [IsPrime(n) select 1 else 0: n in [1..100]];  // Bruno Berselli, Mar 02 2011
    
  • Maple
    A010051:= n -> if isprime(n) then 1 else 0 fi;
  • Mathematica
    Table[ If[ PrimeQ[n], 1, 0], {n, 105}] (* Robert G. Wilson v, Jan 15 2005 *)
    Table[Boole[PrimeQ[n]], {n, 105}] (* Alonso del Arte, Aug 09 2011 *)
    Table[PrimePi[n] - PrimePi[n-1], {n,50}] (* G. C. Greubel, Jan 05 2017 *)
  • PARI
    a(n)=isprime(n) \\ Charles R Greathouse IV, Apr 16 2011
    
  • Python
    from sympy import isprime
    def A010051(n): return int(isprime(n)) # Chai Wah Wu, Jan 20 2022

Formula

a(n) = floor(cos(Pi*((n-1)! + 1)/n)^2) for n >= 2. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 07 2002
Let M(n) be the n X n matrix m(i, j) = 0 if n divides ij + 1, m(i, j) = 1 otherwise; then for n > 0 a(n) = -det(M(n)). - Benoit Cloitre, Jan 17 2003
n >= 2, a(n) = floor(phi(n)/(n - 1)) = floor(A000010(n)/(n - 1)). - Benoit Cloitre, Apr 11 2003
a(n) = Sum_{d|gcd(n, A034386(n))} mu(d). [Brun]
a(m*n) = a(m)*0^(n - 1) + a(n)*0^(m - 1). - Reinhard Zumkeller, Nov 25 2004
a(n) = 1 if n has no divisors other than 1 and n, and 0 otherwise. - Jon Perry, Jul 02 2005
Dirichlet generating function: Sum_{n >= 1} a(n)/n^s = primezeta(s), where primezeta is the prime zeta function. - Franklin T. Adams-Watters, Sep 11 2005
a(n) = (n-1)!^2 mod n. - Franz Vrabec, Jun 24 2006
a(n) = A047886(n, 1). - Reinhard Zumkeller, Apr 15 2008
Equals A051731 (the inverse Möbius transform) * A143519. - Gary W. Adamson, Aug 22 2008
a(n) = A051731((n + 1)! + 1, n) from Wilson's theorem: n is prime if and only if (n + 1)! is congruent to -1 mod n. - N-E. Fahssi, Jan 20 2009, Jan 29 2009
a(n) = A166260/A001477. - Mats Granvik, Oct 10 2009
a(n) = 0^A070824, where 0^0=1. - Mats Granvik, Gary W. Adamson, Feb 21 2010
It appears that a(n) = (H(n)*H(n + 1)) mod n, where H(n) = n!*Sum_{k=1..n} 1/k = A000254(n). - Gary Detlefs, Sep 12 2010
Dirichlet generating function: log( Sum_{n >= 1} 1/(A112624(n)*n^s) ). - Mats Granvik, Apr 13 2011
a(n) = A100995(n) - sqrt(A100995(n)*A193056(n)). - Mats Granvik, Jul 15 2011
a(n) * (2 - n mod 4) = A151763(n). - Reinhard Zumkeller, Oct 06 2011
(n - 1)*a(n) = ( (2*n + 1)!! * Sum_{k=1..n}(1/(2*k + 1))) mod n, n > 2. - Gary Detlefs, Oct 07 2011
For n > 1, a(n) = floor(1/A001222(n)). - Enrique Pérez Herrero, Feb 23 2012
a(n) = mu(n) * Sum_{d|n} mu(d)*omega(d), where mu is A008683 and omega A001222 or A001221 indistinctly. - Enrique Pérez Herrero, Jun 06 2012
a(n) = A003418(n+1)/A003418(n) - A217863(n+1)/A217863(n) = A014963(n) - A072211(n). - Eric Desbiaux, Nov 25 2012
For n > 1, a(n) = floor(A014963(n)/n). - Eric Desbiaux, Jan 08 2013
a(n) = ((abs(n-2))! mod n) mod 2. - Timothy Hopper, May 25 2015
a(n) = abs(F(n)) - abs(F(n)-1/2) - abs(F(n)-1) + abs(f(n)-3/2), where F(n) = Sum_{m=2..n+1} (abs(1 - (n mod m)) - abs(1/2 - (n mod m)) + 1/2), n > 0. F(n) = 1 if n is prime, > 1 otherwise, except F(1) = 0. a(n) = 1 if F(n) = 1, 0 otherwise. - Timothy Hopper, Jun 16 2015
For n > 4, a(n) = (n-2)! mod n. - Thomas Ordowski, Jul 24 2016
From Ilya Gutkovskiy, Jul 24 2016: (Start)
G.f.: A(x) = Sum_{n>=1} x^A000040(n) = B(x)*(1 - x), where B(x) is the g.f. for A000720.
a(n) = floor(2/A000005(n)), for n>1. (End)
a(n) = pi(n) - pi(n-1) = A000720(n) - A000720(n-1), for n>=1. - G. C. Greubel, Jan 05 2017
Decimal expansion of Sum_{k>=1} (1/10)^prime(k) = 9 * Sum_{k>=1} pi(k)/10^(k+1), where pi(k) = A000720(k). - Amiram Eldar, Aug 11 2020
a(n) = 1 - ceiling((2/n) * Sum_{k=2..floor(sqrt(n))} floor(n/k)-floor((n-1)/k)), n>1. - Gary Detlefs, Sep 08 2023
a(n) = Sum_{d|n} mu(d)*omega(n/d), where mu = A008683 and omega = A001221. - Ridouane Oudra, Apr 12 2025
a(n) = 0 if (n^2 - 3*n + 2) * A000203(n) - 8 * A002127(n) > 0 else 1 (n>2, see Craig link). - Bill McEachen, Jul 04 2025

A060043 Triangle T(n,k), n >= 1, k >= 1, of generalized sum of divisors function, read by rows.

Original entry on oeis.org

1, 3, 1, 4, 3, 7, 9, 6, 1, 15, 12, 3, 30, 8, 9, 45, 15, 22, 67, 13, 1, 42, 99, 18, 3, 81, 135, 12, 9, 140, 175, 28, 22, 231, 231, 14, 51, 351, 306, 24, 1, 97, 551, 354, 24, 3, 188, 783, 465, 31, 9, 330, 1134, 540, 18, 22, 568, 1546, 681, 39, 51, 918, 2142, 765, 20
Offset: 1

Views

Author

N. J. A. Sloane, Mar 19 2001

Keywords

Comments

Lengths of rows are 1 1 2 2 2 3 3 3 3 ... (A003056).

Examples

			Triangle turned on its side begins:
1 3 4 7 6 12  8 15 13 18 ...
    1 3 9 15 30 45 67 99 ...
           1  3  9 22 42 ...
                       1 ...
For example, T(6,2) = 15.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, degree(p)-i), i=0..degree(p)-1))(b(n$2)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Jul 21 2025
  • Mathematica
    Clear[diag, m]; nmax = 19; kmax = Floor[(Sqrt[8*nmax+1]-1)/2]; m[0] = 0; diag[k_] := diag[k] = Sum[q^(Sum[m[i], {i, 1, k}])/(Times @@ (1 - q^Array[m, k]))^2, Sequence @@ Table[{m[j], m[j-1]+1, nmax}, {j, 1, k}] // Evaluate] + O[q]^(nmax+1) // CoefficientList[#, q]&; Table[ Select[ Table[diag[k][[j+1]], {k, 1, kmax}], IntegerQ[#] && # > 0&] // Reverse, {j, 1, nmax}] // Flatten (* Jean-François Alcover, Jul 18 2017 *)

Formula

T(n, 1) = sum of divisors of n (A000203), T(n, k) = sum of s_1*s_2*...*s_k where s_1, s_2, ..., s_k are such that s_1*m_1 + s_2*m_2 + ... + s_k*m_k = n and the sum is over all such k-partitions of n.
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1-q^m_1)*(1-q^m_2)*...*(1-q^m_k))^2 = Sum_n T(n, k)*q^n.
G.f. for k-th diagonal: (-1)^k * (1/(2*k+1)) * ( Sum_{j>=k} (-1)^j * (2*j+1) * binomial(j+k,2*k) * q^(j*(j+1)/2) ) / ( Sum_{j>=0} (-1)^j * (2*j+1) * q^(j*(j+1)/2) ). - Seiichi Manyama, Sep 15 2023

Extensions

More terms from Naohiro Nomoto, Jan 24 2002

A385001 Irregular triangle read by rows: T(n,k) is the number of partitions of n with k designated summands, n >= 0, 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 4, 1, 0, 7, 3, 0, 6, 9, 0, 12, 15, 1, 0, 8, 30, 3, 0, 15, 45, 9, 0, 13, 67, 22, 0, 18, 99, 42, 1, 0, 12, 135, 81, 3, 0, 28, 175, 140, 9, 0, 14, 231, 231, 22, 0, 24, 306, 351, 51, 0, 24, 354, 551, 97, 1, 0, 31, 465, 783, 188, 3, 0, 18, 540, 1134, 330, 9
Offset: 0

Views

Author

Omar E. Pol, Jul 17 2025

Keywords

Comments

The divisor function sigma_1(n) = A000203(n) is also the number of partitions of n with only one designated summand, n >= 1.
When part i has multiplicity j > 0 exactly one part i is "designated".
The length of the row n is A002024(n+1) = 1 + A003056(n), hence the first positive element in column k is in the row A000217(k).
Alternating row sums give A329157.
Columns converge to A000716.
This triangle equals A060043 with reversed rows and an additional column 0.

Examples

			Triangle begins:
--------------------------------------------
   n\k:   0    1     2     3     4    5   6
--------------------------------------------
   0 |    1;
   1 |    0,   1;
   2 |    0,   3;
   3 |    0,   4,    1;
   4 |    0,   7,    3;
   5 |    0,   6,    9;
   6 |    0,  12,   15,    1;
   7 |    0,   8,   30,    3;
   8 |    0,  15,   45,    9;
   9 |    0,  13,   67,   22;
  10 |    0,  18,   99,   42,    1;
  11 |    0,  12,  135,   81,    3;
  12 |    0,  28,  175,  140,    9;
  13 |    0,  14,  231,  231,   22;
  14 |    0,  24,  306,  351,   51;
  15 |    0,  24,  354,  551,   97,   1;
  16 |    0,  31,  465,  783,  188,   3;
  17 |    0,  18,  540, 1134,  330,   9;
  18 |    0,  39,  681, 1546,  568,  22;
  19 |    0,  20,  765, 2142,  918,  51;
  20 |    0,  42,  945, 2835, 1452, 108;
  21 |    0,  32, 1040, 3758, 2233, 208,  1;
  ...
For n = 6 and k = 1 there are 12 partitions of 6 with only one designated summand as shown below:
   6'
   3'+ 3
   3 + 3'
   2'+ 2 + 2
   2 + 2'+ 2
   2 + 2 + 2'
   1'+ 1 + 1 + 1 + 1 + 1
   1 + 1'+ 1 + 1 + 1 + 1
   1 + 1 + 1'+ 1 + 1 + 1
   1 + 1 + 1 + 1'+ 1 + 1
   1 + 1 + 1 + 1 + 1'+ 1
   1 + 1 + 1 + 1 + 1 + 1'
So T(6,1) = 12, the same as A000203(6) = 12.
.
For n = 6 and k = 2 there are 15 partitions of 6 with two designated summands as shown below:
   5'+ 1'
   4'+ 2'
   4'+ 1'+ 1
   4'+ 1 + 1'
   3'+ 1'+ 1 + 1
   3'+ 1 + 1'+ 1
   3'+ 1 + 1 + 1'
   2'+ 2 + 1'+ 1
   2'+ 2 + 1 + 1'
   2 + 2'+ 1'+ 1
   2 + 2'+ 1 + 1'
   2'+ 1'+ 1 + 1 + 1
   2'+ 1 + 1'+ 1 + 1
   2'+ 1 + 1 + 1'+ 1
   2'+ 1 + 1 + 1 + 1'
So T(6,2) = 15, the same as A002127(6) = 15.
.
For n = 6 and k = 3 there is only one partition of 6 with three designated summands as shown below:
   3'+ 2'+ 1'
So T(6,3) = 1, the same as A002128(6) = 1.
There are 28 partitions of 6 with designated summands, so A077285(6) = 28.
.
		

Crossrefs

Columns: A000007 (k=0), A000203 (k=1), A002127 (k=2), A002128 (k=3), A365664 (k=4), A365665 (k=5), A384926 (k=6).
Row sums give A077285.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Jul 18 2025

Formula

From Alois P. Heinz, Jul 18 2025: (Start)
Sum_{k>=1} k * T(n,k) = A293421(n).
T(A000096(n),n) = A000716(n). (End)
G.f.: Product_{i>0} 1 + (y*x^i)/(1 - x^i)^2. - John Tyler Rascoe, Jul 23 2025
Conjecture: For fixed k >= 1, Sum_{j=1..n} T(j,k) ~ Pi^(2*k) * n^(2*k) / ((2*k)! * (2*k+1)!). - Vaclav Kotesovec, Aug 01 2025

A002128 MacMahon's generalized sum of divisors function.

Original entry on oeis.org

1, 3, 9, 22, 42, 81, 140, 231, 351, 551, 783, 1134, 1546, 2142, 2835, 3758, 4818, 6237, 7826, 9885, 12159, 14974, 18261, 22113, 26511, 31668, 37611, 44149, 52074, 60660, 70569, 81396, 94311, 107317, 123879, 140049, 160154, 179949, 204867, 228137
Offset: 6

Views

Author

Keywords

Comments

Number of partitions of n with three designated summands. For example: a(8) = 9 because there are 9 partitions of 8 with three designated summands: [5'+ 2'+ 1'], [4'+ 3'+ 1'], [4'+ 2'+ 1'+ 1], [4'+ 2'+ 1 + 1'], [3'+ 2'+ 2 + 1'], [3'+ 2 + 2'+ 1'], [3'+ 2'+ 1'+ 1 + 1], [3'+ 2'+ 1 + 1'+ 1], [3'+ 2'+ 1 + 1 + 1']. - Omar E. Pol, Jul 25 2025

Examples

			x^6 + 3*x^7 + 9*x^8 + 22*x^9 + 42*x^10 + 81*x^11 + 140*x^12 + 231*x^13 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060043.
Cf. A002127.
Column 3 of A385001.

Programs

  • PARI
    {a(n) = if( n<1, 0, (3*sigma(n,5) + (-30*n + 50)*sigma(n,3) + (40*n^2 - 100*n + 37)*sigma(n)) / 1920)} /* Michael Somos, Jan 10 2012 */

Formula

G.f.: (t(1)^3-3*t(1)*t(2)+2*t(3))/6 where t(i) = Sum(x^(n*i)/(1-x^n)^(2*i),n=1..inf), i=1..3. - Vladeta Jovovic, Sep 21 2007
G.f.: (Sum_{k>=0} (-1)^k * (2*k + 1) * binomial( k+3, 6) * x^( k*(k+1) / 2 )) / (-7 * Sum_{k>=0} (-1)^k * (2*k + 1) * x^( k*(k+1) / 2 )). - Michael Somos, Jan 10 2012
Sum_{k=1..n} a(k) ~ Pi^6 * n^6 / (6!*7!). - Vaclav Kotesovec, Aug 01 2025

Extensions

More terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Sep 21 2007

A365664 Expansion of Sum_{0

Original entry on oeis.org

1, 3, 9, 22, 51, 97, 188, 330, 568, 918, 1452, 2233, 3344, 4884, 7004, 9856, 13653, 18699, 25080, 33462, 43918, 57304, 73668, 94482, 119262, 150285, 187231, 232560, 285660, 350746, 425627, 516477, 620731, 745503, 887796, 1056669, 1247521, 1472460, 1726054, 2021327
Offset: 10

Views

Author

Seiichi Manyama, Sep 15 2023

Keywords

Comments

Number of partitions of n with four designated summands. For example: a(11) = 3 because there are three partitions of 11 with four designated summands: [5'+ 3'+ 2'+ 1'], [4'+ 3'+ 2'+ 1'+ 1], [4'+ 3'+ 2'+ 1 + 1']. - Omar E. Pol, Jul 26 2025

Crossrefs

A diagonal of A060043.
Column k=4 of A385001.

Programs

  • Mathematica
    a[n_] := Module[{d = DivisorSigma[{1, 3, 5, 7}, n]}, (5*d[[4]] - (126*n-441)*d[[3]] + (756*n^2-4410*n+4935)*d[[2]] - (840*n^3-5880*n^2+9870*n-3229)*d[[1]])/967680]; Array[a, 40, 10] (* Amiram Eldar, Jan 07 2025 *)
  • PARI
    a(n) = (5*sigma(n, 7)-(126*n-441)*sigma(n, 5)+(756*n^2-4410*n+4935)*sigma(n, 3)-(840*n^3-5880*n^2+9870*n-3229)*sigma(n))/967680; \\ Seiichi Manyama, Jul 24 2024

Formula

G.f.: (1/9) * ( Sum_{k>=4} (-1)^k * (2*k+1) * binomial(k+4,8) * q^(k*(k+1)/2) ) / ( Sum_{k>=0} (-1)^k * (2*k+1) * q^(k*(k+1)/2) ).
a(n) = (5*sigma_7(n) - (126*n-441)*sigma_5(n) + (756*n^2-4410*n+4935)*sigma_3(n) - (840*n^3-5880*n^2+9870*n-3229)*sigma(n))/967680. - Seiichi Manyama, Jul 24 2024
Sum_{k=1..n} a(k) ~ Pi^8 * n^8 / (8!*9!). - Vaclav Kotesovec, Aug 01 2025

A365665 Expansion of Sum_{0

Original entry on oeis.org

1, 3, 9, 22, 51, 108, 208, 390, 693, 1193, 1977, 3195, 4995, 7722, 11583, 17164, 24882, 35685, 50205, 70083, 96300, 131101, 176358, 235377, 310651, 407352, 529074, 682750, 874038, 1112085, 1405521, 1766259, 2206413, 2741431, 3389052, 4168089, 5103450, 6218469
Offset: 15

Views

Author

Seiichi Manyama, Sep 15 2023

Keywords

Comments

Number of partitions of n with five designated summands (when part i has multiplicity j > 0 exactly one part i is "designated"). For example: a(16) = 3 because there are three partitions of 16 with five designated summands: [6'+ 4'+ 3'+ 2'+ 1'], [5'+ 4'+ 3'+ 2'+ 1'+ 1], [5'+ 4'+ 3'+ 2'+ 1 + 1']. - Omar E. Pol, Jul 29 2025

Crossrefs

A diagonal of A060043.
Column k=5 of A385001.
Cf. A384926.

Programs

  • Mathematica
    nmax = 60; Drop[CoefficientList[Series[-1/11 * Sum[(-1)^k*(2*k + 1)*Binomial[k + 5, 10]*x^(k*(k + 1)/2), {k, 5, nmax}]/Sum[(-1)^k*(2*k + 1)*x^(k*(k + 1)/2), {k, 0, nmax}], {x, 0, nmax}], x], 15] (* Vaclav Kotesovec, Jul 29 2025 *)
    (* or *)
    Table[(10679/17203200 - 1571*n/774144 + 133*n^2/92160 - n^3/3072 + n^4/46080) * DivisorSigma[1, n] + (1571/1548288 - 133*n/122880 + 3*n^2/10240 - n^3/46080) * DivisorSigma[3, n] + (133/1228800 - n/20480 + n^2/215040) * DivisorSigma[5, n] + (1/516096 - n/3096576) * DivisorSigma[7, n] + DivisorSigma[9, n]/154828800, {n, 15, 60}] (* Vaclav Kotesovec, Jul 29 2025 *)

Formula

G.f.: -(1/11) * ( Sum_{k>=5} (-1)^k * (2*k+1) * binomial(k+5,10) * q^(k*(k+1)/2) ) / ( Sum_{k>=0} (-1)^k * (2*k+1) * q^(k*(k+1)/2) ).
From Vaclav Kotesovec, Jul 29 2025: (Start)
a(n) = (10679/17203200 - 1571*n/774144 + 133*n^2/92160 - n^3/3072 + n^4/46080)*sigma(n) + (1571/1548288 - 133*n/122880 + 3*n^2/10240 - n^3/46080)*sigma_3(n) + (133/1228800 - n/20480 + n^2/215040)*sigma_5(n) + (1/516096 - n/3096576)*sigma_7(n) + sigma_9(n)/154828800.
Sum_{k=1..n} a(k) ~ Pi^10 * n^10 / 144850083840000.
(End)

A374929 Expansion of Sum_{1<=i<=j} q^(i+j)/( (1-q^i)*(1-q^j) )^2.

Original entry on oeis.org

1, 5, 14, 29, 55, 86, 140, 191, 285, 355, 511, 595, 818, 938, 1240, 1356, 1810, 1905, 2471, 2640, 3297, 3410, 4415, 4399, 5495, 5690, 6930, 6895, 8718, 8440, 10416, 10480, 12438, 12220, 15295, 14421, 17435, 17402, 20595, 19670, 24272, 22715, 27433, 26939, 31110, 29716, 36735, 33714, 40180, 39210
Offset: 2

Views

Author

Seiichi Manyama, Jul 24 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A374929[n_] := (7*DivisorSigma[3, n] - (6*n + 1)*DivisorSigma[1, n])/24;
    Array[A374929, 50, 2] (* Paolo Xausa, Jul 24 2024 *)
  • PARI
    a(n) = (7*sigma(n, 3)-(6*n+1)*sigma(n))/24;

Formula

a(n) = (7*sigma_3(n) - (6*n+1)*sigma(n))/24.

A384926 Number of partitions of n with six designated summands.

Original entry on oeis.org

1, 3, 9, 22, 51, 108, 221, 414, 765, 1344, 2310, 3834, 6248, 9894, 15408, 23550, 35394, 52353, 76402, 109959, 156366, 219850, 305796, 421281, 574568, 777234, 1042083, 1387037, 1831362, 2402595, 3128995, 4051797, 5211639, 6668490, 8482089, 10737063, 13516615
Offset: 21

Views

Author

Omar E. Pol, Jul 23 2025

Keywords

Examples

			21 has only one partition with six designated summands: [6'+ 5'+ 4'+ 3'+ 2'+ 1'], so a(21) = 1.
22 has three partitions with six designated summands: [7'+ 5'+ 4'+ 3'+ 2'+ 1'], [6'+ 5'+ 4'+ 3'+ 2'+ 1'+ 1], [6'+ 5'+ 4'+ 3'+ 2'+ 1 + 1'], so a(22) = 3.
		

Crossrefs

Column k=6 of A385001.
Columns of A385001 converge to A000716.
Other columns k of A385001 are A000007 (k=0), A000203 (k=1), A002127 (k=2), A002128 (k=3), A365664 (k=4), A365665 (k=5).

Programs

  • Maple
    b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-i*j, i-1)*j*x, j=1..n/i))), x, 7)
        end:
    a:= n-> coeff(b(n$2), x, 6):
    seq(a(n), n=21..57);  # Alois P. Heinz, Jul 23 2025
  • Mathematica
    nmax=60; Drop[CoefficientList[Series[1/13 * Sum[(-1)^k*(2*k + 1)*Binomial[k + 6, 12]*x^(k*(k + 1)/2), {k, 6, nmax}]/Sum[(-1)^k*(2*k + 1)*x^(k*(k + 1)/2), {k, 0, nmax}], {x, 0, nmax}], x] , 21] (* Vaclav Kotesovec, Jul 29 2025 *)

Formula

A000716(n) >= a(21+n) with equality only for n <= 6.
Sum_{k=1..n} a(k) ~ Pi^12 * n^12 / (12! * 13!). - Vaclav Kotesovec, Aug 01 2025

Extensions

More terms from Alois P. Heinz, Jul 23 2025

A374915 a(n) = (n - 1) * (n - 2) * sigma(n).

Original entry on oeis.org

0, 0, 8, 42, 72, 240, 240, 630, 728, 1296, 1080, 3080, 1848, 3744, 4368, 6510, 4320, 10608, 6120, 14364, 12160, 15120, 11088, 30360, 17112, 25200, 26000, 39312, 22680, 58464, 27840, 58590, 47616, 57024, 53856, 108290, 47880, 79920, 78736, 133380, 65520, 157440
Offset: 1

Views

Author

Seiichi Manyama, Jul 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= (n - 1) * (n - 2) * DivisorSigma[1,n]; Array[a,42] (* Stefano Spezia, Jul 23 2024 *)
  • PARI
    a(n) = (n-1)*(n-2)*sigma(n);

Formula

a(n) = A002378(n-2) * A000203(n).
a(n) >= 8 * A002127(n) and the equal sign only holds if n is 1 or prime.
Showing 1-9 of 9 results.