cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002127 MacMahon's generalized sum of divisors function.

Original entry on oeis.org

1, 3, 9, 15, 30, 45, 67, 99, 135, 175, 231, 306, 354, 465, 540, 681, 765, 945, 1040, 1305, 1386, 1695, 1779, 2205, 2290, 2754, 2835, 3438, 3480, 4185, 4272, 5076, 5004, 6100, 5985, 7155, 7154, 8325, 8190, 9840, 9471, 11241, 11055, 12870, 12420, 14911
Offset: 3

Views

Author

Keywords

Comments

Number of partitions of n with two designated summands. For example: a(5) = 9 because there are 9 partitions of 5 with two designated summands: [4'+ 1'], [3'+ 2'], [3'+ 1'+ 1], [3'+ 1 + 1'], [2'+ 2 + 1'], [2 + 2'+ 1'], [2'+ 1'+ 1 + 1], [2'+ 1 + 1'+ 1], [2'+ 1 + 1 + 1']. - Omar E. Pol, Jul 23 2025

Examples

			x^3 + 3*x^4 + 9*x^5 + 15*x^6 + 30*x^7 + 45*x^8 + 67*x^9 + 99*x^10 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060043.
Cf. A002128.
Column 2 of A385001.

Programs

  • Mathematica
    A002127[n_] := (DivisorSigma[3, n] - (2*n - 1)*DivisorSigma[1, n])/8;
    Array[A002127, 50, 3] (* Paolo Xausa, Jul 04 2025, after Michael Somos's PARI *)
  • PARI
    {a(n) = if( n<1, 0, ( sigma( n, 3) - (2*n - 1) * sigma(n) ) / 8)} /* Michael Somos, Jan 10 2012 */

Formula

G.f.: (Sum_{k>=0} (-1)^k * (2*k + 1) * binomial( k+2, 4) * x^( k*(k+1) / 2 )) / (5 * Sum_{k>=0} (-1)^k * (2*k + 1) * x^( k*(k+1) / 2 )). - Michael Somos, Jan 10 2012
a(n) = (n^2 - 3*n + 2) * A000203(n) / 8 iff n is an odd prime (see Craig link et al.).
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / (4!*5!). - Vaclav Kotesovec, Aug 01 2025

Extensions

More terms from Vladeta Jovovic, Nov 11 2001

A002128 MacMahon's generalized sum of divisors function.

Original entry on oeis.org

1, 3, 9, 22, 42, 81, 140, 231, 351, 551, 783, 1134, 1546, 2142, 2835, 3758, 4818, 6237, 7826, 9885, 12159, 14974, 18261, 22113, 26511, 31668, 37611, 44149, 52074, 60660, 70569, 81396, 94311, 107317, 123879, 140049, 160154, 179949, 204867, 228137
Offset: 6

Views

Author

Keywords

Comments

Number of partitions of n with three designated summands. For example: a(8) = 9 because there are 9 partitions of 8 with three designated summands: [5'+ 2'+ 1'], [4'+ 3'+ 1'], [4'+ 2'+ 1'+ 1], [4'+ 2'+ 1 + 1'], [3'+ 2'+ 2 + 1'], [3'+ 2 + 2'+ 1'], [3'+ 2'+ 1'+ 1 + 1], [3'+ 2'+ 1 + 1'+ 1], [3'+ 2'+ 1 + 1 + 1']. - Omar E. Pol, Jul 25 2025

Examples

			x^6 + 3*x^7 + 9*x^8 + 22*x^9 + 42*x^10 + 81*x^11 + 140*x^12 + 231*x^13 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060043.
Cf. A002127.
Column 3 of A385001.

Programs

  • PARI
    {a(n) = if( n<1, 0, (3*sigma(n,5) + (-30*n + 50)*sigma(n,3) + (40*n^2 - 100*n + 37)*sigma(n)) / 1920)} /* Michael Somos, Jan 10 2012 */

Formula

G.f.: (t(1)^3-3*t(1)*t(2)+2*t(3))/6 where t(i) = Sum(x^(n*i)/(1-x^n)^(2*i),n=1..inf), i=1..3. - Vladeta Jovovic, Sep 21 2007
G.f.: (Sum_{k>=0} (-1)^k * (2*k + 1) * binomial( k+3, 6) * x^( k*(k+1) / 2 )) / (-7 * Sum_{k>=0} (-1)^k * (2*k + 1) * x^( k*(k+1) / 2 )). - Michael Somos, Jan 10 2012
Sum_{k=1..n} a(k) ~ Pi^6 * n^6 / (6!*7!). - Vaclav Kotesovec, Aug 01 2025

Extensions

More terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Sep 21 2007

A365664 Expansion of Sum_{0

Original entry on oeis.org

1, 3, 9, 22, 51, 97, 188, 330, 568, 918, 1452, 2233, 3344, 4884, 7004, 9856, 13653, 18699, 25080, 33462, 43918, 57304, 73668, 94482, 119262, 150285, 187231, 232560, 285660, 350746, 425627, 516477, 620731, 745503, 887796, 1056669, 1247521, 1472460, 1726054, 2021327
Offset: 10

Views

Author

Seiichi Manyama, Sep 15 2023

Keywords

Comments

Number of partitions of n with four designated summands. For example: a(11) = 3 because there are three partitions of 11 with four designated summands: [5'+ 3'+ 2'+ 1'], [4'+ 3'+ 2'+ 1'+ 1], [4'+ 3'+ 2'+ 1 + 1']. - Omar E. Pol, Jul 26 2025

Crossrefs

A diagonal of A060043.
Column k=4 of A385001.

Programs

  • Mathematica
    a[n_] := Module[{d = DivisorSigma[{1, 3, 5, 7}, n]}, (5*d[[4]] - (126*n-441)*d[[3]] + (756*n^2-4410*n+4935)*d[[2]] - (840*n^3-5880*n^2+9870*n-3229)*d[[1]])/967680]; Array[a, 40, 10] (* Amiram Eldar, Jan 07 2025 *)
  • PARI
    a(n) = (5*sigma(n, 7)-(126*n-441)*sigma(n, 5)+(756*n^2-4410*n+4935)*sigma(n, 3)-(840*n^3-5880*n^2+9870*n-3229)*sigma(n))/967680; \\ Seiichi Manyama, Jul 24 2024

Formula

G.f.: (1/9) * ( Sum_{k>=4} (-1)^k * (2*k+1) * binomial(k+4,8) * q^(k*(k+1)/2) ) / ( Sum_{k>=0} (-1)^k * (2*k+1) * q^(k*(k+1)/2) ).
a(n) = (5*sigma_7(n) - (126*n-441)*sigma_5(n) + (756*n^2-4410*n+4935)*sigma_3(n) - (840*n^3-5880*n^2+9870*n-3229)*sigma(n))/967680. - Seiichi Manyama, Jul 24 2024
Sum_{k=1..n} a(k) ~ Pi^8 * n^8 / (8!*9!). - Vaclav Kotesovec, Aug 01 2025

A365665 Expansion of Sum_{0

Original entry on oeis.org

1, 3, 9, 22, 51, 108, 208, 390, 693, 1193, 1977, 3195, 4995, 7722, 11583, 17164, 24882, 35685, 50205, 70083, 96300, 131101, 176358, 235377, 310651, 407352, 529074, 682750, 874038, 1112085, 1405521, 1766259, 2206413, 2741431, 3389052, 4168089, 5103450, 6218469
Offset: 15

Views

Author

Seiichi Manyama, Sep 15 2023

Keywords

Comments

Number of partitions of n with five designated summands (when part i has multiplicity j > 0 exactly one part i is "designated"). For example: a(16) = 3 because there are three partitions of 16 with five designated summands: [6'+ 4'+ 3'+ 2'+ 1'], [5'+ 4'+ 3'+ 2'+ 1'+ 1], [5'+ 4'+ 3'+ 2'+ 1 + 1']. - Omar E. Pol, Jul 29 2025

Crossrefs

A diagonal of A060043.
Column k=5 of A385001.
Cf. A384926.

Programs

  • Mathematica
    nmax = 60; Drop[CoefficientList[Series[-1/11 * Sum[(-1)^k*(2*k + 1)*Binomial[k + 5, 10]*x^(k*(k + 1)/2), {k, 5, nmax}]/Sum[(-1)^k*(2*k + 1)*x^(k*(k + 1)/2), {k, 0, nmax}], {x, 0, nmax}], x], 15] (* Vaclav Kotesovec, Jul 29 2025 *)
    (* or *)
    Table[(10679/17203200 - 1571*n/774144 + 133*n^2/92160 - n^3/3072 + n^4/46080) * DivisorSigma[1, n] + (1571/1548288 - 133*n/122880 + 3*n^2/10240 - n^3/46080) * DivisorSigma[3, n] + (133/1228800 - n/20480 + n^2/215040) * DivisorSigma[5, n] + (1/516096 - n/3096576) * DivisorSigma[7, n] + DivisorSigma[9, n]/154828800, {n, 15, 60}] (* Vaclav Kotesovec, Jul 29 2025 *)

Formula

G.f.: -(1/11) * ( Sum_{k>=5} (-1)^k * (2*k+1) * binomial(k+5,10) * q^(k*(k+1)/2) ) / ( Sum_{k>=0} (-1)^k * (2*k+1) * q^(k*(k+1)/2) ).
From Vaclav Kotesovec, Jul 29 2025: (Start)
a(n) = (10679/17203200 - 1571*n/774144 + 133*n^2/92160 - n^3/3072 + n^4/46080)*sigma(n) + (1571/1548288 - 133*n/122880 + 3*n^2/10240 - n^3/46080)*sigma_3(n) + (133/1228800 - n/20480 + n^2/215040)*sigma_5(n) + (1/516096 - n/3096576)*sigma_7(n) + sigma_9(n)/154828800.
Sum_{k=1..n} a(k) ~ Pi^10 * n^10 / 144850083840000.
(End)

A329157 Expansion of Product_{k>=1} (1 - Sum_{j>=1} j * x^(k*j)).

Original entry on oeis.org

1, -1, -3, -3, -4, 3, 2, 19, 21, 32, 40, 45, 16, 8, -18, -125, -164, -291, -358, -530, -588, -724, -592, -675, -358, -207, 570, 1201, 2208, 3333, 4944, 6490, 8277, 10492, 11800, 13260, 14328, 14722, 12942, 12075, 5640, 603, -10444, -21120, -39360, -55876, -83488
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2019

Keywords

Comments

Convolution inverse of A329156.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, b(n, i-1), 0)-
          add(b(n-i*j, min(n-i*j, i-1))*j, j=`if`(i=1, n, 1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..46);  # Alois P. Heinz, Jul 18 2025
  • Mathematica
    nmax = 46; CoefficientList[Series[Product[(1 - Sum[j x^(k j), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 46; CoefficientList[Series[Product[(1 - x^k/(1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 - x^k / (1 - x^k)^2).
G.f.: exp(-Sum_{k>=1} ( Sum_{d|k} 1 / (d * (1 - x^(k/d))^(2*d)) ) * x^k).
G.f.: Product_{k>=1} (1 - x^k)^A032198(k).
G.f.: A(x) = Product_{k>=1} 1 / B(x^k), where B(x) = g.f. of A088305.
a(n) = Sum_{k=0..A003056(n)} (-1)^k * A385001(n,k). - Alois P. Heinz, Jul 18 2025

A384926 Number of partitions of n with six designated summands.

Original entry on oeis.org

1, 3, 9, 22, 51, 108, 221, 414, 765, 1344, 2310, 3834, 6248, 9894, 15408, 23550, 35394, 52353, 76402, 109959, 156366, 219850, 305796, 421281, 574568, 777234, 1042083, 1387037, 1831362, 2402595, 3128995, 4051797, 5211639, 6668490, 8482089, 10737063, 13516615
Offset: 21

Views

Author

Omar E. Pol, Jul 23 2025

Keywords

Examples

			21 has only one partition with six designated summands: [6'+ 5'+ 4'+ 3'+ 2'+ 1'], so a(21) = 1.
22 has three partitions with six designated summands: [7'+ 5'+ 4'+ 3'+ 2'+ 1'], [6'+ 5'+ 4'+ 3'+ 2'+ 1'+ 1], [6'+ 5'+ 4'+ 3'+ 2'+ 1 + 1'], so a(22) = 3.
		

Crossrefs

Column k=6 of A385001.
Columns of A385001 converge to A000716.
Other columns k of A385001 are A000007 (k=0), A000203 (k=1), A002127 (k=2), A002128 (k=3), A365664 (k=4), A365665 (k=5).

Programs

  • Maple
    b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-i*j, i-1)*j*x, j=1..n/i))), x, 7)
        end:
    a:= n-> coeff(b(n$2), x, 6):
    seq(a(n), n=21..57);  # Alois P. Heinz, Jul 23 2025
  • Mathematica
    nmax=60; Drop[CoefficientList[Series[1/13 * Sum[(-1)^k*(2*k + 1)*Binomial[k + 6, 12]*x^(k*(k + 1)/2), {k, 6, nmax}]/Sum[(-1)^k*(2*k + 1)*x^(k*(k + 1)/2), {k, 0, nmax}], {x, 0, nmax}], x] , 21] (* Vaclav Kotesovec, Jul 29 2025 *)

Formula

A000716(n) >= a(21+n) with equality only for n <= 6.
Sum_{k=1..n} a(k) ~ Pi^12 * n^12 / (12! * 13!). - Vaclav Kotesovec, Aug 01 2025

Extensions

More terms from Alois P. Heinz, Jul 23 2025

A384999 Irregular triangle read by rows: T(n,k) is the total number of partitions of all numbers <= n with k designated summands, n >= 0, 0 <= k <= A003056(n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 8, 1, 1, 15, 4, 1, 21, 13, 1, 33, 28, 1, 1, 41, 58, 4, 1, 56, 103, 13, 1, 69, 170, 35, 1, 87, 269, 77, 1, 1, 99, 404, 158, 4, 1, 127, 579, 298, 13, 1, 141, 810, 529, 35, 1, 165, 1116, 880, 86, 1, 189, 1470, 1431, 183, 1, 1, 220, 1935, 2214, 371, 4, 1, 238, 2475, 3348, 701, 13
Offset: 0

Views

Author

Omar E. Pol, Jul 22 2025

Keywords

Comments

When part i has multiplicity j > 0 exactly one part i is "designated".
The length of the row n is A002024(n+1) = 1 + A003056(n), hence the first positive element in column k is in the row A000217(k).
Column k gives the partial sums of the column k of A385001.
Columns converge to A210843 which is also the partial sums of A000716.

Examples

			Triangle begins:
---------------------------------------------
   n\k:   0    1     2      3     4    5   6
---------------------------------------------
   0 |    1;
   1 |    1,   1;
   2 |    1,   4;
   3 |    1,   8,    1;
   4 |    1,  15,    4;
   5 |    1,  21,   13;
   6 |    1,  33,   28,     1;
   7 |    1,  41,   58,     4;
   8 |    1,  56,  103,    13;
   9 |    1,  69,  170,    35;
  10 |    1,  87,  269,    77,    1;
  11 |    1,  99,  404,   158,    4;
  12 |    1, 127,  579,   298,   13;
  13 |    1, 141,  810,   529,   35;
  14 |    1, 165, 1116,   880,   86;
  15 |    1, 189, 1470,  1431,  183,   1;
  16 |    1, 220, 1935,  2214,  371,   4;
  17 |    1, 238, 2475,  3348,  701,  13;
  18 |    1, 277, 3156,  4894, 1269,  35;
  19 |    1, 297, 3921,  7036, 2187,  86;
  20 |    1, 339, 4866,  9871, 3639, 194;
  21 |    1, 371, 5906, 13629, 5872, 402,  1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
        end:
    g:= proc(n) option remember; `if`(n<0, 0, g(n-1)+b(n$2)) end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Jul 22 2025

A384998 Total number of partitions of all numbers <= n with designated summands, n >= 0.

Original entry on oeis.org

1, 2, 5, 10, 20, 35, 63, 104, 173, 275, 435, 666, 1018, 1516, 2248, 3275, 4745, 6776, 9632, 13528, 18910, 26182, 36078, 49311, 67111, 90690, 122052, 163271, 217559, 288350, 380806, 500504, 655601, 855113, 1111777, 1439911, 1859347, 2392509, 3069921, 3926494
Offset: 0

Views

Author

Omar E. Pol, Aug 06 2025

Keywords

Crossrefs

Partial sums of A077285.
Row sums of A384999.
Cf. A385001.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-i*j, i-1)*j, j=1..n/i)))
        end:
    a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+b(n$2)) end:
    seq(a(n), n=0..41);  # Alois P. Heinz, Aug 06 2025
  • Mathematica
    nmax = 50; CoefficientList[Series[1/(1-x) * Product[(1 + x^(3*k))/((1 - x^k)*(1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 08 2025 *)

Formula

From Vaclav Kotesovec, Aug 08 2025: (Start)
a(n) ~ 5^(1/4) * exp(sqrt(10*n)*Pi/3) / (2^(9/4) * sqrt(3) * Pi * n^(3/4)).
G.f.: 1/(1-x) * Product_{k>=1} (1 + x^(3*k))/((1 - x^k)*(1 - x^(2*k))). (End)
Showing 1-8 of 8 results.