A002127
MacMahon's generalized sum of divisors function.
Original entry on oeis.org
1, 3, 9, 15, 30, 45, 67, 99, 135, 175, 231, 306, 354, 465, 540, 681, 765, 945, 1040, 1305, 1386, 1695, 1779, 2205, 2290, 2754, 2835, 3438, 3480, 4185, 4272, 5076, 5004, 6100, 5985, 7155, 7154, 8325, 8190, 9840, 9471, 11241, 11055, 12870, 12420, 14911
Offset: 3
x^3 + 3*x^4 + 9*x^5 + 15*x^6 + 30*x^7 + 45*x^8 + 67*x^9 + 99*x^10 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 3..10000
- G. E. Andrews and S. C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, arXiv:1010.5769 [math.NT], 2010.
- William Craig, Jan-Willem van Ittersum and Ken Ono, Integer partitions detect the primes, PNAS, Vol. 121, No. 39 (2024), e2409417121.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113; Coll. Papers II, pp. 303-341.
- S. Rose, What literature is known about MacMahon's generalized sum-of-divisors function?
-
A002127[n_] := (DivisorSigma[3, n] - (2*n - 1)*DivisorSigma[1, n])/8;
Array[A002127, 50, 3] (* Paolo Xausa, Jul 04 2025, after Michael Somos's PARI *)
-
{a(n) = if( n<1, 0, ( sigma( n, 3) - (2*n - 1) * sigma(n) ) / 8)} /* Michael Somos, Jan 10 2012 */
A002128
MacMahon's generalized sum of divisors function.
Original entry on oeis.org
1, 3, 9, 22, 42, 81, 140, 231, 351, 551, 783, 1134, 1546, 2142, 2835, 3758, 4818, 6237, 7826, 9885, 12159, 14974, 18261, 22113, 26511, 31668, 37611, 44149, 52074, 60660, 70569, 81396, 94311, 107317, 123879, 140049, 160154, 179949, 204867, 228137
Offset: 6
x^6 + 3*x^7 + 9*x^8 + 22*x^9 + 42*x^10 + 81*x^11 + 140*x^12 + 231*x^13 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- John Cerkan, Table of n, a(n) for n = 6..10000
- G. E. Andrews and S. C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, arXiv:1010.5769 [math.NT], 2010.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113; Coll. Papers II, pp. 303-341.
- S. Rose, What literature is known about MacMahon's generalized sum-of-divisors function?
-
{a(n) = if( n<1, 0, (3*sigma(n,5) + (-30*n + 50)*sigma(n,3) + (40*n^2 - 100*n + 37)*sigma(n)) / 1920)} /* Michael Somos, Jan 10 2012 */
A365664
Expansion of Sum_{0
Original entry on oeis.org
1, 3, 9, 22, 51, 97, 188, 330, 568, 918, 1452, 2233, 3344, 4884, 7004, 9856, 13653, 18699, 25080, 33462, 43918, 57304, 73668, 94482, 119262, 150285, 187231, 232560, 285660, 350746, 425627, 516477, 620731, 745503, 887796, 1056669, 1247521, 1472460, 1726054, 2021327
Offset: 10
- Seiichi Manyama, Table of n, a(n) for n = 10..10000
- George E. Andrews and Simon C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, Journal für die reine und angewandte Mathematik (Crelles Journal), Vol. 2013, No. 676 (2013), pp. 97-103; arXiv preprint, arXiv:1010.5769 [math.NT], 2010.
-
a[n_] := Module[{d = DivisorSigma[{1, 3, 5, 7}, n]}, (5*d[[4]] - (126*n-441)*d[[3]] + (756*n^2-4410*n+4935)*d[[2]] - (840*n^3-5880*n^2+9870*n-3229)*d[[1]])/967680]; Array[a, 40, 10] (* Amiram Eldar, Jan 07 2025 *)
-
a(n) = (5*sigma(n, 7)-(126*n-441)*sigma(n, 5)+(756*n^2-4410*n+4935)*sigma(n, 3)-(840*n^3-5880*n^2+9870*n-3229)*sigma(n))/967680; \\ Seiichi Manyama, Jul 24 2024
A365665
Expansion of Sum_{0
Original entry on oeis.org
1, 3, 9, 22, 51, 108, 208, 390, 693, 1193, 1977, 3195, 4995, 7722, 11583, 17164, 24882, 35685, 50205, 70083, 96300, 131101, 176358, 235377, 310651, 407352, 529074, 682750, 874038, 1112085, 1405521, 1766259, 2206413, 2741431, 3389052, 4168089, 5103450, 6218469
Offset: 15
-
nmax = 60; Drop[CoefficientList[Series[-1/11 * Sum[(-1)^k*(2*k + 1)*Binomial[k + 5, 10]*x^(k*(k + 1)/2), {k, 5, nmax}]/Sum[(-1)^k*(2*k + 1)*x^(k*(k + 1)/2), {k, 0, nmax}], {x, 0, nmax}], x], 15] (* Vaclav Kotesovec, Jul 29 2025 *)
(* or *)
Table[(10679/17203200 - 1571*n/774144 + 133*n^2/92160 - n^3/3072 + n^4/46080) * DivisorSigma[1, n] + (1571/1548288 - 133*n/122880 + 3*n^2/10240 - n^3/46080) * DivisorSigma[3, n] + (133/1228800 - n/20480 + n^2/215040) * DivisorSigma[5, n] + (1/516096 - n/3096576) * DivisorSigma[7, n] + DivisorSigma[9, n]/154828800, {n, 15, 60}] (* Vaclav Kotesovec, Jul 29 2025 *)
A329157
Expansion of Product_{k>=1} (1 - Sum_{j>=1} j * x^(k*j)).
Original entry on oeis.org
1, -1, -3, -3, -4, 3, 2, 19, 21, 32, 40, 45, 16, 8, -18, -125, -164, -291, -358, -530, -588, -724, -592, -675, -358, -207, 570, 1201, 2208, 3333, 4944, 6490, 8277, 10492, 11800, 13260, 14328, 14722, 12942, 12075, 5640, 603, -10444, -21120, -39360, -55876, -83488
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, b(n, i-1), 0)-
add(b(n-i*j, min(n-i*j, i-1))*j, j=`if`(i=1, n, 1..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..46); # Alois P. Heinz, Jul 18 2025
-
nmax = 46; CoefficientList[Series[Product[(1 - Sum[j x^(k j), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 46; CoefficientList[Series[Product[(1 - x^k/(1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]
A384926
Number of partitions of n with six designated summands.
Original entry on oeis.org
1, 3, 9, 22, 51, 108, 221, 414, 765, 1344, 2310, 3834, 6248, 9894, 15408, 23550, 35394, 52353, 76402, 109959, 156366, 219850, 305796, 421281, 574568, 777234, 1042083, 1387037, 1831362, 2402595, 3128995, 4051797, 5211639, 6668490, 8482089, 10737063, 13516615
Offset: 21
21 has only one partition with six designated summands: [6'+ 5'+ 4'+ 3'+ 2'+ 1'], so a(21) = 1.
22 has three partitions with six designated summands: [7'+ 5'+ 4'+ 3'+ 2'+ 1'], [6'+ 5'+ 4'+ 3'+ 2'+ 1'+ 1], [6'+ 5'+ 4'+ 3'+ 2'+ 1 + 1'], so a(22) = 3.
-
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-i*j, i-1)*j*x, j=1..n/i))), x, 7)
end:
a:= n-> coeff(b(n$2), x, 6):
seq(a(n), n=21..57); # Alois P. Heinz, Jul 23 2025
-
nmax=60; Drop[CoefficientList[Series[1/13 * Sum[(-1)^k*(2*k + 1)*Binomial[k + 6, 12]*x^(k*(k + 1)/2), {k, 6, nmax}]/Sum[(-1)^k*(2*k + 1)*x^(k*(k + 1)/2), {k, 0, nmax}], {x, 0, nmax}], x] , 21] (* Vaclav Kotesovec, Jul 29 2025 *)
A384999
Irregular triangle read by rows: T(n,k) is the total number of partitions of all numbers <= n with k designated summands, n >= 0, 0 <= k <= A003056(n).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 8, 1, 1, 15, 4, 1, 21, 13, 1, 33, 28, 1, 1, 41, 58, 4, 1, 56, 103, 13, 1, 69, 170, 35, 1, 87, 269, 77, 1, 1, 99, 404, 158, 4, 1, 127, 579, 298, 13, 1, 141, 810, 529, 35, 1, 165, 1116, 880, 86, 1, 189, 1470, 1431, 183, 1, 1, 220, 1935, 2214, 371, 4, 1, 238, 2475, 3348, 701, 13
Offset: 0
Triangle begins:
---------------------------------------------
n\k: 0 1 2 3 4 5 6
---------------------------------------------
0 | 1;
1 | 1, 1;
2 | 1, 4;
3 | 1, 8, 1;
4 | 1, 15, 4;
5 | 1, 21, 13;
6 | 1, 33, 28, 1;
7 | 1, 41, 58, 4;
8 | 1, 56, 103, 13;
9 | 1, 69, 170, 35;
10 | 1, 87, 269, 77, 1;
11 | 1, 99, 404, 158, 4;
12 | 1, 127, 579, 298, 13;
13 | 1, 141, 810, 529, 35;
14 | 1, 165, 1116, 880, 86;
15 | 1, 189, 1470, 1431, 183, 1;
16 | 1, 220, 1935, 2214, 371, 4;
17 | 1, 238, 2475, 3348, 701, 13;
18 | 1, 277, 3156, 4894, 1269, 35;
19 | 1, 297, 3921, 7036, 2187, 86;
20 | 1, 339, 4866, 9871, 3639, 194;
21 | 1, 371, 5906, 13629, 5872, 402, 1;
...
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
end:
g:= proc(n) option remember; `if`(n<0, 0, g(n-1)+b(n$2)) end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n)):
seq(T(n), n=0..20); # Alois P. Heinz, Jul 22 2025
A384998
Total number of partitions of all numbers <= n with designated summands, n >= 0.
Original entry on oeis.org
1, 2, 5, 10, 20, 35, 63, 104, 173, 275, 435, 666, 1018, 1516, 2248, 3275, 4745, 6776, 9632, 13528, 18910, 26182, 36078, 49311, 67111, 90690, 122052, 163271, 217559, 288350, 380806, 500504, 655601, 855113, 1111777, 1439911, 1859347, 2392509, 3069921, 3926494
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-i*j, i-1)*j, j=1..n/i)))
end:
a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+b(n$2)) end:
seq(a(n), n=0..41); # Alois P. Heinz, Aug 06 2025
-
nmax = 50; CoefficientList[Series[1/(1-x) * Product[(1 + x^(3*k))/((1 - x^k)*(1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 08 2025 *)
Showing 1-8 of 8 results.
Comments