A385001 Irregular triangle read by rows: T(n,k) is the number of partitions of n with k designated summands, n >= 0, 0 <= k <= A003056(n).
1, 0, 1, 0, 3, 0, 4, 1, 0, 7, 3, 0, 6, 9, 0, 12, 15, 1, 0, 8, 30, 3, 0, 15, 45, 9, 0, 13, 67, 22, 0, 18, 99, 42, 1, 0, 12, 135, 81, 3, 0, 28, 175, 140, 9, 0, 14, 231, 231, 22, 0, 24, 306, 351, 51, 0, 24, 354, 551, 97, 1, 0, 31, 465, 783, 188, 3, 0, 18, 540, 1134, 330, 9
Offset: 0
Examples
Triangle begins: -------------------------------------------- n\k: 0 1 2 3 4 5 6 -------------------------------------------- 0 | 1; 1 | 0, 1; 2 | 0, 3; 3 | 0, 4, 1; 4 | 0, 7, 3; 5 | 0, 6, 9; 6 | 0, 12, 15, 1; 7 | 0, 8, 30, 3; 8 | 0, 15, 45, 9; 9 | 0, 13, 67, 22; 10 | 0, 18, 99, 42, 1; 11 | 0, 12, 135, 81, 3; 12 | 0, 28, 175, 140, 9; 13 | 0, 14, 231, 231, 22; 14 | 0, 24, 306, 351, 51; 15 | 0, 24, 354, 551, 97, 1; 16 | 0, 31, 465, 783, 188, 3; 17 | 0, 18, 540, 1134, 330, 9; 18 | 0, 39, 681, 1546, 568, 22; 19 | 0, 20, 765, 2142, 918, 51; 20 | 0, 42, 945, 2835, 1452, 108; 21 | 0, 32, 1040, 3758, 2233, 208, 1; ... For n = 6 and k = 1 there are 12 partitions of 6 with only one designated summand as shown below: 6' 3'+ 3 3 + 3' 2'+ 2 + 2 2 + 2'+ 2 2 + 2 + 2' 1'+ 1 + 1 + 1 + 1 + 1 1 + 1'+ 1 + 1 + 1 + 1 1 + 1 + 1'+ 1 + 1 + 1 1 + 1 + 1 + 1'+ 1 + 1 1 + 1 + 1 + 1 + 1'+ 1 1 + 1 + 1 + 1 + 1 + 1' So T(6,1) = 12, the same as A000203(6) = 12. . For n = 6 and k = 2 there are 15 partitions of 6 with two designated summands as shown below: 5'+ 1' 4'+ 2' 4'+ 1'+ 1 4'+ 1 + 1' 3'+ 1'+ 1 + 1 3'+ 1 + 1'+ 1 3'+ 1 + 1 + 1' 2'+ 2 + 1'+ 1 2'+ 2 + 1 + 1' 2 + 2'+ 1'+ 1 2 + 2'+ 1 + 1' 2'+ 1'+ 1 + 1 + 1 2'+ 1 + 1'+ 1 + 1 2'+ 1 + 1 + 1'+ 1 2'+ 1 + 1 + 1 + 1' So T(6,2) = 15, the same as A002127(6) = 15. . For n = 6 and k = 3 there is only one partition of 6 with three designated summands as shown below: 3'+ 2'+ 1' So T(6,3) = 1, the same as A002128(6) = 1. There are 28 partitions of 6 with designated summands, so A077285(6) = 28. .
Links
- Alois P. Heinz, Rows n = 0..1000, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i))) end: T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..20); # Alois P. Heinz, Jul 18 2025
Formula
From Alois P. Heinz, Jul 18 2025: (Start)
Sum_{k>=1} k * T(n,k) = A293421(n).
G.f.: Product_{i>0} 1 + (y*x^i)/(1 - x^i)^2. - John Tyler Rascoe, Jul 23 2025
Conjecture: For fixed k >= 1, Sum_{j=1..n} T(j,k) ~ Pi^(2*k) * n^(2*k) / ((2*k)! * (2*k+1)!). - Vaclav Kotesovec, Aug 01 2025
Comments