A060043
Triangle T(n,k), n >= 1, k >= 1, of generalized sum of divisors function, read by rows.
Original entry on oeis.org
1, 3, 1, 4, 3, 7, 9, 6, 1, 15, 12, 3, 30, 8, 9, 45, 15, 22, 67, 13, 1, 42, 99, 18, 3, 81, 135, 12, 9, 140, 175, 28, 22, 231, 231, 14, 51, 351, 306, 24, 1, 97, 551, 354, 24, 3, 188, 783, 465, 31, 9, 330, 1134, 540, 18, 22, 568, 1546, 681, 39, 51, 918, 2142, 765, 20
Offset: 1
Triangle turned on its side begins:
1 3 4 7 6 12 8 15 13 18 ...
1 3 9 15 30 45 67 99 ...
1 3 9 22 42 ...
1 ...
For example, T(6,2) = 15.
- Alois P. Heinz, Rows n = 1..1000, flattened
- G. E. Andrews and S. C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, arXiv:1010.5769 [math.NT], 2010.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113; Coll. Papers II, pp. 303-341.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
end:
T:= n-> (p-> seq(coeff(p, x, degree(p)-i), i=0..degree(p)-1))(b(n$2)):
seq(T(n), n=1..20); # Alois P. Heinz, Jul 21 2025
-
Clear[diag, m]; nmax = 19; kmax = Floor[(Sqrt[8*nmax+1]-1)/2]; m[0] = 0; diag[k_] := diag[k] = Sum[q^(Sum[m[i], {i, 1, k}])/(Times @@ (1 - q^Array[m, k]))^2, Sequence @@ Table[{m[j], m[j-1]+1, nmax}, {j, 1, k}] // Evaluate] + O[q]^(nmax+1) // CoefficientList[#, q]&; Table[ Select[ Table[diag[k][[j+1]], {k, 1, kmax}], IntegerQ[#] && # > 0&] // Reverse, {j, 1, nmax}] // Flatten (* Jean-François Alcover, Jul 18 2017 *)
A385001
Irregular triangle read by rows: T(n,k) is the number of partitions of n with k designated summands, n >= 0, 0 <= k <= A003056(n).
Original entry on oeis.org
1, 0, 1, 0, 3, 0, 4, 1, 0, 7, 3, 0, 6, 9, 0, 12, 15, 1, 0, 8, 30, 3, 0, 15, 45, 9, 0, 13, 67, 22, 0, 18, 99, 42, 1, 0, 12, 135, 81, 3, 0, 28, 175, 140, 9, 0, 14, 231, 231, 22, 0, 24, 306, 351, 51, 0, 24, 354, 551, 97, 1, 0, 31, 465, 783, 188, 3, 0, 18, 540, 1134, 330, 9
Offset: 0
Triangle begins:
--------------------------------------------
n\k: 0 1 2 3 4 5 6
--------------------------------------------
0 | 1;
1 | 0, 1;
2 | 0, 3;
3 | 0, 4, 1;
4 | 0, 7, 3;
5 | 0, 6, 9;
6 | 0, 12, 15, 1;
7 | 0, 8, 30, 3;
8 | 0, 15, 45, 9;
9 | 0, 13, 67, 22;
10 | 0, 18, 99, 42, 1;
11 | 0, 12, 135, 81, 3;
12 | 0, 28, 175, 140, 9;
13 | 0, 14, 231, 231, 22;
14 | 0, 24, 306, 351, 51;
15 | 0, 24, 354, 551, 97, 1;
16 | 0, 31, 465, 783, 188, 3;
17 | 0, 18, 540, 1134, 330, 9;
18 | 0, 39, 681, 1546, 568, 22;
19 | 0, 20, 765, 2142, 918, 51;
20 | 0, 42, 945, 2835, 1452, 108;
21 | 0, 32, 1040, 3758, 2233, 208, 1;
...
For n = 6 and k = 1 there are 12 partitions of 6 with only one designated summand as shown below:
6'
3'+ 3
3 + 3'
2'+ 2 + 2
2 + 2'+ 2
2 + 2 + 2'
1'+ 1 + 1 + 1 + 1 + 1
1 + 1'+ 1 + 1 + 1 + 1
1 + 1 + 1'+ 1 + 1 + 1
1 + 1 + 1 + 1'+ 1 + 1
1 + 1 + 1 + 1 + 1'+ 1
1 + 1 + 1 + 1 + 1 + 1'
So T(6,1) = 12, the same as A000203(6) = 12.
.
For n = 6 and k = 2 there are 15 partitions of 6 with two designated summands as shown below:
5'+ 1'
4'+ 2'
4'+ 1'+ 1
4'+ 1 + 1'
3'+ 1'+ 1 + 1
3'+ 1 + 1'+ 1
3'+ 1 + 1 + 1'
2'+ 2 + 1'+ 1
2'+ 2 + 1 + 1'
2 + 2'+ 1'+ 1
2 + 2'+ 1 + 1'
2'+ 1'+ 1 + 1 + 1
2'+ 1 + 1'+ 1 + 1
2'+ 1 + 1 + 1'+ 1
2'+ 1 + 1 + 1 + 1'
So T(6,2) = 15, the same as A002127(6) = 15.
.
For n = 6 and k = 3 there is only one partition of 6 with three designated summands as shown below:
3'+ 2'+ 1'
So T(6,3) = 1, the same as A002128(6) = 1.
There are 28 partitions of 6 with designated summands, so A077285(6) = 28.
.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
end:
T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..20); # Alois P. Heinz, Jul 18 2025
A365664
Expansion of Sum_{0
Original entry on oeis.org
1, 3, 9, 22, 51, 97, 188, 330, 568, 918, 1452, 2233, 3344, 4884, 7004, 9856, 13653, 18699, 25080, 33462, 43918, 57304, 73668, 94482, 119262, 150285, 187231, 232560, 285660, 350746, 425627, 516477, 620731, 745503, 887796, 1056669, 1247521, 1472460, 1726054, 2021327
Offset: 10
- Seiichi Manyama, Table of n, a(n) for n = 10..10000
- George E. Andrews and Simon C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, Journal für die reine und angewandte Mathematik (Crelles Journal), Vol. 2013, No. 676 (2013), pp. 97-103; arXiv preprint, arXiv:1010.5769 [math.NT], 2010.
-
a[n_] := Module[{d = DivisorSigma[{1, 3, 5, 7}, n]}, (5*d[[4]] - (126*n-441)*d[[3]] + (756*n^2-4410*n+4935)*d[[2]] - (840*n^3-5880*n^2+9870*n-3229)*d[[1]])/967680]; Array[a, 40, 10] (* Amiram Eldar, Jan 07 2025 *)
-
a(n) = (5*sigma(n, 7)-(126*n-441)*sigma(n, 5)+(756*n^2-4410*n+4935)*sigma(n, 3)-(840*n^3-5880*n^2+9870*n-3229)*sigma(n))/967680; \\ Seiichi Manyama, Jul 24 2024
A384926
Number of partitions of n with six designated summands.
Original entry on oeis.org
1, 3, 9, 22, 51, 108, 221, 414, 765, 1344, 2310, 3834, 6248, 9894, 15408, 23550, 35394, 52353, 76402, 109959, 156366, 219850, 305796, 421281, 574568, 777234, 1042083, 1387037, 1831362, 2402595, 3128995, 4051797, 5211639, 6668490, 8482089, 10737063, 13516615
Offset: 21
21 has only one partition with six designated summands: [6'+ 5'+ 4'+ 3'+ 2'+ 1'], so a(21) = 1.
22 has three partitions with six designated summands: [7'+ 5'+ 4'+ 3'+ 2'+ 1'], [6'+ 5'+ 4'+ 3'+ 2'+ 1'+ 1], [6'+ 5'+ 4'+ 3'+ 2'+ 1 + 1'], so a(22) = 3.
-
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-i*j, i-1)*j*x, j=1..n/i))), x, 7)
end:
a:= n-> coeff(b(n$2), x, 6):
seq(a(n), n=21..57); # Alois P. Heinz, Jul 23 2025
-
nmax=60; Drop[CoefficientList[Series[1/13 * Sum[(-1)^k*(2*k + 1)*Binomial[k + 6, 12]*x^(k*(k + 1)/2), {k, 6, nmax}]/Sum[(-1)^k*(2*k + 1)*x^(k*(k + 1)/2), {k, 0, nmax}], {x, 0, nmax}], x] , 21] (* Vaclav Kotesovec, Jul 29 2025 *)
Showing 1-4 of 4 results.
Comments