cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A060177 Triangle of generalized sum of divisors function, read by rows.

Original entry on oeis.org

1, 2, 1, 2, 2, 3, 5, 2, 1, 6, 4, 2, 11, 2, 5, 13, 4, 10, 17, 3, 1, 15, 22, 4, 2, 25, 27, 2, 5, 37, 29, 6, 10, 52, 37, 2, 20, 67, 44, 4, 1, 30, 97, 44, 4, 2, 52, 117, 55, 5, 5, 77, 154, 59, 2, 10, 117, 184, 68, 6, 20, 162, 235, 71, 2, 36, 227, 277, 81, 6, 1, 58, 309, 338
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2001

Keywords

Comments

Lengths of rows are 1 1 2 2 2 3 3 3 3 4 4 4 4 4 ... (A003056).

Examples

			Triangle turned on its side begins:
  1  2  2  3  2  4  2  4  3  4  2  6 ...
        1  2  5  6 11 13 17 22 27 29 ...
                 1  2  5 10 15 25 37 ...
                             1  2  5 ...
		

Crossrefs

Cf. A116608 (reflected rows). - Alois P. Heinz, Jan 29 2014

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          expand(b(n, i-1) +x*add(b(n-i*j, i-1), j=1..n/i))))
        end:
    T:= n->(p->seq(coeff(p, x, degree(p)-k), k=0..degree(p)-1))(b(n$2)):
    seq(T(n), n=1..25);  # Alois P. Heinz, Jan 29 2014
  • Mathematica
    Reverse /@ Table[Length /@ Split[ Sort[Map[Length, Split /@ IntegerPartitions[n], {1}]]], {n, 24}] (* Wouter Meeussen, Apr 21 2012, updated by Jean-François Alcover, Jan 29 2014 *)
  • Python
    from math import isqrt
    from itertools import count, islice
    from sympy.utilities.iterables import partitions
    def A060177_gen(): # generator of terms
        return (sum(1 for p in partitions(n) if len(p)==k) for n in count(1) for k in range(isqrt((n<<3)+1)-1>>1,0,-1))
    A060177_list = list(islice(A060177_gen(),30)) # Chai Wah Wu, Sep 15 2023

Formula

T(n,k) = Partitions of n using only k types of piles. Also, Sum_{k=1..A003056(n)} T(n,k)*k = A000070(n). Also, Sum_{k=1..A003056(n)} T(n,k)*(k-1) = A058884(n). - Naohiro Nomoto, Jan 24 2002
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1-q^m_1)*(1-q^m_2)*...*(1-q^m_k)) = Sum_n T(n, k)*q^n.

Extensions

More terms from Naohiro Nomoto, Jan 24 2002

A002127 MacMahon's generalized sum of divisors function.

Original entry on oeis.org

1, 3, 9, 15, 30, 45, 67, 99, 135, 175, 231, 306, 354, 465, 540, 681, 765, 945, 1040, 1305, 1386, 1695, 1779, 2205, 2290, 2754, 2835, 3438, 3480, 4185, 4272, 5076, 5004, 6100, 5985, 7155, 7154, 8325, 8190, 9840, 9471, 11241, 11055, 12870, 12420, 14911
Offset: 3

Views

Author

Keywords

Comments

Number of partitions of n with two designated summands. For example: a(5) = 9 because there are 9 partitions of 5 with two designated summands: [4'+ 1'], [3'+ 2'], [3'+ 1'+ 1], [3'+ 1 + 1'], [2'+ 2 + 1'], [2 + 2'+ 1'], [2'+ 1'+ 1 + 1], [2'+ 1 + 1'+ 1], [2'+ 1 + 1 + 1']. - Omar E. Pol, Jul 23 2025

Examples

			x^3 + 3*x^4 + 9*x^5 + 15*x^6 + 30*x^7 + 45*x^8 + 67*x^9 + 99*x^10 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060043.
Cf. A002128.
Column 2 of A385001.

Programs

  • Mathematica
    A002127[n_] := (DivisorSigma[3, n] - (2*n - 1)*DivisorSigma[1, n])/8;
    Array[A002127, 50, 3] (* Paolo Xausa, Jul 04 2025, after Michael Somos's PARI *)
  • PARI
    {a(n) = if( n<1, 0, ( sigma( n, 3) - (2*n - 1) * sigma(n) ) / 8)} /* Michael Somos, Jan 10 2012 */

Formula

G.f.: (Sum_{k>=0} (-1)^k * (2*k + 1) * binomial( k+2, 4) * x^( k*(k+1) / 2 )) / (5 * Sum_{k>=0} (-1)^k * (2*k + 1) * x^( k*(k+1) / 2 )). - Michael Somos, Jan 10 2012
a(n) = (n^2 - 3*n + 2) * A000203(n) / 8 iff n is an odd prime (see Craig link et al.).
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / (4!*5!). - Vaclav Kotesovec, Aug 01 2025

Extensions

More terms from Vladeta Jovovic, Nov 11 2001

A385001 Irregular triangle read by rows: T(n,k) is the number of partitions of n with k designated summands, n >= 0, 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 4, 1, 0, 7, 3, 0, 6, 9, 0, 12, 15, 1, 0, 8, 30, 3, 0, 15, 45, 9, 0, 13, 67, 22, 0, 18, 99, 42, 1, 0, 12, 135, 81, 3, 0, 28, 175, 140, 9, 0, 14, 231, 231, 22, 0, 24, 306, 351, 51, 0, 24, 354, 551, 97, 1, 0, 31, 465, 783, 188, 3, 0, 18, 540, 1134, 330, 9
Offset: 0

Views

Author

Omar E. Pol, Jul 17 2025

Keywords

Comments

The divisor function sigma_1(n) = A000203(n) is also the number of partitions of n with only one designated summand, n >= 1.
When part i has multiplicity j > 0 exactly one part i is "designated".
The length of the row n is A002024(n+1) = 1 + A003056(n), hence the first positive element in column k is in the row A000217(k).
Alternating row sums give A329157.
Columns converge to A000716.
This triangle equals A060043 with reversed rows and an additional column 0.

Examples

			Triangle begins:
--------------------------------------------
   n\k:   0    1     2     3     4    5   6
--------------------------------------------
   0 |    1;
   1 |    0,   1;
   2 |    0,   3;
   3 |    0,   4,    1;
   4 |    0,   7,    3;
   5 |    0,   6,    9;
   6 |    0,  12,   15,    1;
   7 |    0,   8,   30,    3;
   8 |    0,  15,   45,    9;
   9 |    0,  13,   67,   22;
  10 |    0,  18,   99,   42,    1;
  11 |    0,  12,  135,   81,    3;
  12 |    0,  28,  175,  140,    9;
  13 |    0,  14,  231,  231,   22;
  14 |    0,  24,  306,  351,   51;
  15 |    0,  24,  354,  551,   97,   1;
  16 |    0,  31,  465,  783,  188,   3;
  17 |    0,  18,  540, 1134,  330,   9;
  18 |    0,  39,  681, 1546,  568,  22;
  19 |    0,  20,  765, 2142,  918,  51;
  20 |    0,  42,  945, 2835, 1452, 108;
  21 |    0,  32, 1040, 3758, 2233, 208,  1;
  ...
For n = 6 and k = 1 there are 12 partitions of 6 with only one designated summand as shown below:
   6'
   3'+ 3
   3 + 3'
   2'+ 2 + 2
   2 + 2'+ 2
   2 + 2 + 2'
   1'+ 1 + 1 + 1 + 1 + 1
   1 + 1'+ 1 + 1 + 1 + 1
   1 + 1 + 1'+ 1 + 1 + 1
   1 + 1 + 1 + 1'+ 1 + 1
   1 + 1 + 1 + 1 + 1'+ 1
   1 + 1 + 1 + 1 + 1 + 1'
So T(6,1) = 12, the same as A000203(6) = 12.
.
For n = 6 and k = 2 there are 15 partitions of 6 with two designated summands as shown below:
   5'+ 1'
   4'+ 2'
   4'+ 1'+ 1
   4'+ 1 + 1'
   3'+ 1'+ 1 + 1
   3'+ 1 + 1'+ 1
   3'+ 1 + 1 + 1'
   2'+ 2 + 1'+ 1
   2'+ 2 + 1 + 1'
   2 + 2'+ 1'+ 1
   2 + 2'+ 1 + 1'
   2'+ 1'+ 1 + 1 + 1
   2'+ 1 + 1'+ 1 + 1
   2'+ 1 + 1 + 1'+ 1
   2'+ 1 + 1 + 1 + 1'
So T(6,2) = 15, the same as A002127(6) = 15.
.
For n = 6 and k = 3 there is only one partition of 6 with three designated summands as shown below:
   3'+ 2'+ 1'
So T(6,3) = 1, the same as A002128(6) = 1.
There are 28 partitions of 6 with designated summands, so A077285(6) = 28.
.
		

Crossrefs

Columns: A000007 (k=0), A000203 (k=1), A002127 (k=2), A002128 (k=3), A365664 (k=4), A365665 (k=5), A384926 (k=6).
Row sums give A077285.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Jul 18 2025

Formula

From Alois P. Heinz, Jul 18 2025: (Start)
Sum_{k>=1} k * T(n,k) = A293421(n).
T(A000096(n),n) = A000716(n). (End)
G.f.: Product_{i>0} 1 + (y*x^i)/(1 - x^i)^2. - John Tyler Rascoe, Jul 23 2025
Conjecture: For fixed k >= 1, Sum_{j=1..n} T(j,k) ~ Pi^(2*k) * n^(2*k) / ((2*k)! * (2*k+1)!). - Vaclav Kotesovec, Aug 01 2025

A002128 MacMahon's generalized sum of divisors function.

Original entry on oeis.org

1, 3, 9, 22, 42, 81, 140, 231, 351, 551, 783, 1134, 1546, 2142, 2835, 3758, 4818, 6237, 7826, 9885, 12159, 14974, 18261, 22113, 26511, 31668, 37611, 44149, 52074, 60660, 70569, 81396, 94311, 107317, 123879, 140049, 160154, 179949, 204867, 228137
Offset: 6

Views

Author

Keywords

Comments

Number of partitions of n with three designated summands. For example: a(8) = 9 because there are 9 partitions of 8 with three designated summands: [5'+ 2'+ 1'], [4'+ 3'+ 1'], [4'+ 2'+ 1'+ 1], [4'+ 2'+ 1 + 1'], [3'+ 2'+ 2 + 1'], [3'+ 2 + 2'+ 1'], [3'+ 2'+ 1'+ 1 + 1], [3'+ 2'+ 1 + 1'+ 1], [3'+ 2'+ 1 + 1 + 1']. - Omar E. Pol, Jul 25 2025

Examples

			x^6 + 3*x^7 + 9*x^8 + 22*x^9 + 42*x^10 + 81*x^11 + 140*x^12 + 231*x^13 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060043.
Cf. A002127.
Column 3 of A385001.

Programs

  • PARI
    {a(n) = if( n<1, 0, (3*sigma(n,5) + (-30*n + 50)*sigma(n,3) + (40*n^2 - 100*n + 37)*sigma(n)) / 1920)} /* Michael Somos, Jan 10 2012 */

Formula

G.f.: (t(1)^3-3*t(1)*t(2)+2*t(3))/6 where t(i) = Sum(x^(n*i)/(1-x^n)^(2*i),n=1..inf), i=1..3. - Vladeta Jovovic, Sep 21 2007
G.f.: (Sum_{k>=0} (-1)^k * (2*k + 1) * binomial( k+3, 6) * x^( k*(k+1) / 2 )) / (-7 * Sum_{k>=0} (-1)^k * (2*k + 1) * x^( k*(k+1) / 2 )). - Michael Somos, Jan 10 2012
Sum_{k=1..n} a(k) ~ Pi^6 * n^6 / (6!*7!). - Vaclav Kotesovec, Aug 01 2025

Extensions

More terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Sep 21 2007

A060044 Triangle of generalized sum of divisors function, read by rows.

Original entry on oeis.org

1, -1, 1, 4, -1, -5, 1, 6, 1, 3, -4, -1, -2, 8, 1, 1, -13, -2, -5, 13, 1, 10, 23, -6, -1, -11, -25, 12, 1, 12, 27, -20, -2, -21, -49, 14, 3, 31, 74, -8, 1, 5, -13, -62, 24, -1, -4, 23, 85, -29, 1, 2, -42, -132, 18, -2, -8, 42, 165, -13, 3, 14, -42, -195, 20, -4, -20, 43, 229, -30
Offset: 1

Views

Author

N. J. A. Sloane, Mar 19 2001

Keywords

Comments

Lengths of rows are 1 1 2 2 2 3 3 3 3 ... (A003056).

Examples

			Triangle turned on its side begins:
  1  -1   4  -5   6  -4   8 -13  13 ...
          1  -1   1   3  -2   1  -5 ...
                      1  -1   1  -2 ...
For example, T(8,3) = 1.
		

Crossrefs

Diagonals give A002129, A002130, A060045. Cf. A060043, A060177.
Cf. A003056.

Formula

T(n, k) = sum of (-1)^(k+s_1+s_2+...+s_k) * s_1*s_2*...*s_k where s_1, s_2, ..., s_k are such that s_1*m_1 + s_2*m_2 + ... + s_k*m_k = n and the sum is over all such k-partitions of n.
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1+q^m_1)*(1+q^m_2)*...*(1+q^m_k))^2 = Sum_n T(n, k)*q^n.

Extensions

More terms from Naohiro Nomoto, Jan 24 2002

A060047 Triangle of generalized sum of divisors function, read by rows.

Original entry on oeis.org

1, 2, 4, 1, 4, 2, 6, 4, 8, 8, 8, 14, 8, 1, 18, 13, 2, 28, 12, 4, 40, 12, 8, 52, 16, 14, 70, 14, 24, 88, 16, 40, 104, 24, 1, 56, 140, 16, 2, 84, 168, 18, 4, 122, 196, 26, 8, 168, 240, 20, 14, 232, 278, 24, 24, 312, 320, 32, 40, 408, 380, 24, 64, 528, 440, 24, 100, 672, 504
Offset: 1

Views

Author

N. J. A. Sloane, Mar 19 2001

Keywords

Comments

Lengths of rows are 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 ... (A000196).

Examples

			Triangle turned on its side begins:
  1  2  4  4  6  8  8  8 13 12 12 ...
           1  2  4  8 14 18 28 40 ...
                          1  2  4 ...
For example, T(6,1) = 8, T(6,2) = 4.
		

Crossrefs

Formula

T(n, k) = sum of s_1*s_2*...*s_k where s_1, s_2, ..., s_k are such that s_1*(2*m_1-1) + s_2*(2*m_2-1) + ... + s_k*(2*m_k-1) = n and the sum is over all such k-partitions of n.
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(2*m_1+2*m_2+...+2*m_k-k)/((1-q^{2*m_1-1})*(1-q^{2*m_2-1})*...*(1-q^{2*m_k-1}))^2 = Sum_n T(n, k)*q^n.
G.f. for k-th diagonal: (-1)^k * (1/k) * ( Sum_{j>=k} (-1)^j * j * binomial(j+k-1,2*k-1) * q^(j^2) ) / ( 1 + 2 * Sum_{j>=1} (-q)^(j^2) ). - Seiichi Manyama, Sep 15 2023

Extensions

More terms from Naohiro Nomoto, Jan 24 2002

A365664 Expansion of Sum_{0

Original entry on oeis.org

1, 3, 9, 22, 51, 97, 188, 330, 568, 918, 1452, 2233, 3344, 4884, 7004, 9856, 13653, 18699, 25080, 33462, 43918, 57304, 73668, 94482, 119262, 150285, 187231, 232560, 285660, 350746, 425627, 516477, 620731, 745503, 887796, 1056669, 1247521, 1472460, 1726054, 2021327
Offset: 10

Views

Author

Seiichi Manyama, Sep 15 2023

Keywords

Comments

Number of partitions of n with four designated summands. For example: a(11) = 3 because there are three partitions of 11 with four designated summands: [5'+ 3'+ 2'+ 1'], [4'+ 3'+ 2'+ 1'+ 1], [4'+ 3'+ 2'+ 1 + 1']. - Omar E. Pol, Jul 26 2025

Crossrefs

A diagonal of A060043.
Column k=4 of A385001.

Programs

  • Mathematica
    a[n_] := Module[{d = DivisorSigma[{1, 3, 5, 7}, n]}, (5*d[[4]] - (126*n-441)*d[[3]] + (756*n^2-4410*n+4935)*d[[2]] - (840*n^3-5880*n^2+9870*n-3229)*d[[1]])/967680]; Array[a, 40, 10] (* Amiram Eldar, Jan 07 2025 *)
  • PARI
    a(n) = (5*sigma(n, 7)-(126*n-441)*sigma(n, 5)+(756*n^2-4410*n+4935)*sigma(n, 3)-(840*n^3-5880*n^2+9870*n-3229)*sigma(n))/967680; \\ Seiichi Manyama, Jul 24 2024

Formula

G.f.: (1/9) * ( Sum_{k>=4} (-1)^k * (2*k+1) * binomial(k+4,8) * q^(k*(k+1)/2) ) / ( Sum_{k>=0} (-1)^k * (2*k+1) * q^(k*(k+1)/2) ).
a(n) = (5*sigma_7(n) - (126*n-441)*sigma_5(n) + (756*n^2-4410*n+4935)*sigma_3(n) - (840*n^3-5880*n^2+9870*n-3229)*sigma(n))/967680. - Seiichi Manyama, Jul 24 2024
Sum_{k=1..n} a(k) ~ Pi^8 * n^8 / (8!*9!). - Vaclav Kotesovec, Aug 01 2025

A365665 Expansion of Sum_{0

Original entry on oeis.org

1, 3, 9, 22, 51, 108, 208, 390, 693, 1193, 1977, 3195, 4995, 7722, 11583, 17164, 24882, 35685, 50205, 70083, 96300, 131101, 176358, 235377, 310651, 407352, 529074, 682750, 874038, 1112085, 1405521, 1766259, 2206413, 2741431, 3389052, 4168089, 5103450, 6218469
Offset: 15

Views

Author

Seiichi Manyama, Sep 15 2023

Keywords

Comments

Number of partitions of n with five designated summands (when part i has multiplicity j > 0 exactly one part i is "designated"). For example: a(16) = 3 because there are three partitions of 16 with five designated summands: [6'+ 4'+ 3'+ 2'+ 1'], [5'+ 4'+ 3'+ 2'+ 1'+ 1], [5'+ 4'+ 3'+ 2'+ 1 + 1']. - Omar E. Pol, Jul 29 2025

Crossrefs

A diagonal of A060043.
Column k=5 of A385001.
Cf. A384926.

Programs

  • Mathematica
    nmax = 60; Drop[CoefficientList[Series[-1/11 * Sum[(-1)^k*(2*k + 1)*Binomial[k + 5, 10]*x^(k*(k + 1)/2), {k, 5, nmax}]/Sum[(-1)^k*(2*k + 1)*x^(k*(k + 1)/2), {k, 0, nmax}], {x, 0, nmax}], x], 15] (* Vaclav Kotesovec, Jul 29 2025 *)
    (* or *)
    Table[(10679/17203200 - 1571*n/774144 + 133*n^2/92160 - n^3/3072 + n^4/46080) * DivisorSigma[1, n] + (1571/1548288 - 133*n/122880 + 3*n^2/10240 - n^3/46080) * DivisorSigma[3, n] + (133/1228800 - n/20480 + n^2/215040) * DivisorSigma[5, n] + (1/516096 - n/3096576) * DivisorSigma[7, n] + DivisorSigma[9, n]/154828800, {n, 15, 60}] (* Vaclav Kotesovec, Jul 29 2025 *)

Formula

G.f.: -(1/11) * ( Sum_{k>=5} (-1)^k * (2*k+1) * binomial(k+5,10) * q^(k*(k+1)/2) ) / ( Sum_{k>=0} (-1)^k * (2*k+1) * q^(k*(k+1)/2) ).
From Vaclav Kotesovec, Jul 29 2025: (Start)
a(n) = (10679/17203200 - 1571*n/774144 + 133*n^2/92160 - n^3/3072 + n^4/46080)*sigma(n) + (1571/1548288 - 133*n/122880 + 3*n^2/10240 - n^3/46080)*sigma_3(n) + (133/1228800 - n/20480 + n^2/215040)*sigma_5(n) + (1/516096 - n/3096576)*sigma_7(n) + sigma_9(n)/154828800.
Sum_{k=1..n} a(k) ~ Pi^10 * n^10 / 144850083840000.
(End)

A060184 Triangle of generalized sum of divisors function, read by rows.

Original entry on oeis.org

1, 0, 1, 2, 0, -1, 1, 2, 1, 2, 0, 0, 1, 2, 1, 1, -2, 0, 1, 3, 1, 5, 6, 0, 0, -1, -1, 2, 1, 5, 5, -2, 0, -2, -3, 2, 2, 9, 10, 0, 1, 4, 3, 0, 4, 0, 2, 9, 9, -3, 1, 3, -2, -7, 2, 0, 3, 14, 16, 0, 2, 6, -1, -9, 2, 0, 3, 15, 17, -2, 1, 8, 19, 10, -6, 4, 0, -1, 0, 15, 22, 0, 1, 9, 21, 7, -13, 2, 0, -2, -4, 11, 20, -4, 2, 15, 33, 14, -15, 3, 0, -4, -10, 10, 28, 0, 3
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2001

Keywords

Comments

Lengths of rows are 1 1 2 2 2 3 3 3 3 4 4 4 4 4 ... (A003056).

Examples

			Triangle turned on its side begins:
  1  0  2 -1  2  0  2 -2  3  0  2 ...
        1  0  1  2  1  1  1  6 -1 ...
              1  0  1  0  5 -1  5 ...
		

Crossrefs

Programs

  • Mathematica
    max = 27(*rows*); t[n_, k_] := Module[{m, mm, q, s}, mm = Array[m, k]; s = Sum[q^Total[mm]/Times @@ (1+q^mm), Evaluate[Sequence @@ Transpose[{mm, Join[{1}, Most[mm]+1], max-Range[k-1, 0, -1]}]]]; SeriesCoefficient[s, {q, 0, n}]]; Table[Print[an = Table[t[n, k], {k, Floor[(Sqrt[8*n+1]-1)/2], 1, -1}]]; an, {n, 1, max}] // Flatten (* Jean-François Alcover, Jan 21 2014 *)

Formula

G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1+q^m_1)*(1+q^m_2)*...*(1+q^m_k)) = Sum_n T(n, k)*q^n.

Extensions

More terms from Vladeta Jovovic, Sep 20 2007

A374915 a(n) = (n - 1) * (n - 2) * sigma(n).

Original entry on oeis.org

0, 0, 8, 42, 72, 240, 240, 630, 728, 1296, 1080, 3080, 1848, 3744, 4368, 6510, 4320, 10608, 6120, 14364, 12160, 15120, 11088, 30360, 17112, 25200, 26000, 39312, 22680, 58464, 27840, 58590, 47616, 57024, 53856, 108290, 47880, 79920, 78736, 133380, 65520, 157440
Offset: 1

Views

Author

Seiichi Manyama, Jul 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= (n - 1) * (n - 2) * DivisorSigma[1,n]; Array[a,42] (* Stefano Spezia, Jul 23 2024 *)
  • PARI
    a(n) = (n-1)*(n-2)*sigma(n);

Formula

a(n) = A002378(n-2) * A000203(n).
a(n) >= 8 * A002127(n) and the equal sign only holds if n is 1 or prime.
Showing 1-10 of 10 results.