A060177 Triangle of generalized sum of divisors function, read by rows.
1, 2, 1, 2, 2, 3, 5, 2, 1, 6, 4, 2, 11, 2, 5, 13, 4, 10, 17, 3, 1, 15, 22, 4, 2, 25, 27, 2, 5, 37, 29, 6, 10, 52, 37, 2, 20, 67, 44, 4, 1, 30, 97, 44, 4, 2, 52, 117, 55, 5, 5, 77, 154, 59, 2, 10, 117, 184, 68, 6, 20, 162, 235, 71, 2, 36, 227, 277, 81, 6, 1, 58, 309, 338
Offset: 1
Examples
Triangle turned on its side begins: 1 2 2 3 2 4 2 4 3 4 2 6 ... 1 2 5 6 11 13 17 22 27 29 ... 1 2 5 10 15 25 37 ... 1 2 5 ...
Links
- Alois P. Heinz, Rows n = 1..500, flattened
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, expand(b(n, i-1) +x*add(b(n-i*j, i-1), j=1..n/i)))) end: T:= n->(p->seq(coeff(p, x, degree(p)-k), k=0..degree(p)-1))(b(n$2)): seq(T(n), n=1..25); # Alois P. Heinz, Jan 29 2014
-
Mathematica
Reverse /@ Table[Length /@ Split[ Sort[Map[Length, Split /@ IntegerPartitions[n], {1}]]], {n, 24}] (* Wouter Meeussen, Apr 21 2012, updated by Jean-François Alcover, Jan 29 2014 *)
-
Python
from math import isqrt from itertools import count, islice from sympy.utilities.iterables import partitions def A060177_gen(): # generator of terms return (sum(1 for p in partitions(n) if len(p)==k) for n in count(1) for k in range(isqrt((n<<3)+1)-1>>1,0,-1)) A060177_list = list(islice(A060177_gen(),30)) # Chai Wah Wu, Sep 15 2023
Formula
T(n,k) = Partitions of n using only k types of piles. Also, Sum_{k=1..A003056(n)} T(n,k)*k = A000070(n). Also, Sum_{k=1..A003056(n)} T(n,k)*(k-1) = A058884(n). - Naohiro Nomoto, Jan 24 2002
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1-q^m_1)*(1-q^m_2)*...*(1-q^m_k)) = Sum_n T(n, k)*q^n.
Extensions
More terms from Naohiro Nomoto, Jan 24 2002
Comments