cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A060045 Generalized sum of divisors function: third diagonal of A060044.

Original entry on oeis.org

1, -1, 1, -2, 10, -11, 12, -21, 31, -13, 23, -42, 42, -42, 43, 22, -14, 33, -126, 185, -273, 406, -387, 637, -945, 1092, -1389, 1841, -2358, 2852, -3023, 3876, -4953, 5593, -6321, 7581, -9222, 10241, -11205, 14021, -16247, 17710, -19858, 23015, -26705, 28908, -31318, 36270, -41316, 45619, -49015, 55287
Offset: 9

Views

Author

N. J. A. Sloane, Mar 19 2001

Keywords

Formula

G.f.: (t(1)^3-3*t(1)*t(2)+2*t(3))/6 where t(i) = Sum(x^(n*i)/(1+x^n)^(2*i),n=1..inf), i=1..3. - Vladeta Jovovic, Sep 21 2007

Extensions

More terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Sep 21 2007

A002129 Generalized sum of divisors function: excess of sum of odd divisors of n over sum of even divisors of n.

Original entry on oeis.org

1, -1, 4, -5, 6, -4, 8, -13, 13, -6, 12, -20, 14, -8, 24, -29, 18, -13, 20, -30, 32, -12, 24, -52, 31, -14, 40, -40, 30, -24, 32, -61, 48, -18, 48, -65, 38, -20, 56, -78, 42, -32, 44, -60, 78, -24, 48, -116, 57, -31, 72, -70, 54, -40, 72, -104, 80, -30, 60, -120, 62, -32, 104, -125
Offset: 1

Views

Author

Keywords

Comments

Glaisher calls this zeta(n) or zeta_1(n). - N. J. A. Sloane, Nov 24 2018
Coefficients in expansion of Sum_{n >= 1} x^n/(1+x^n)^2 = Sum_{n >= 1} (-1)^(n-1)*n*x^n/(1-x^n).
Unsigned sequence is A113184. - Peter Bala, Dec 14 2020

Examples

			a(28) = 40 because the sum of the even divisors of 28 (2, 4, 14 and 28) = 48 and the sum of the odd divisors of 28 (1 and 7) = 8, their absolute difference being 40.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 3rd formula.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 259-262.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060044.
a(2^n) = -A036563(n+1). a(3^n) = A003462(n+1).
First differences of -A024919(n).

Programs

  • Maple
    A002129 := proc(n) -add((-1)^d*d,d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Mar 05 2011
  • Mathematica
    f[n_] := Block[{c = Divisors@ n}, Plus @@ Select[c, EvenQ] - Plus @@ Select[c, OddQ]]; Array[f, 64] (* Robert G. Wilson v, Mar 04 2011 *)
    a[n_] := DivisorSum[n, -(-1)^#*#&]; Array[a, 80] (* Jean-François Alcover, Dec 01 2015 *)
    f[p_, e_] := If[p == 2, 3 - 2^(e + 1), (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]);  Array[a, 64] (* Amiram Eldar, Jul 20 2019 *)
  • PARI
    a(n)=if(n<1,0,-sumdiv(n,d,(-1)^d*d))
    
  • PARI
    {a(n)=n*polcoeff(log(sum(k=0,(sqrtint(8*n+1)-1)\2,x^(k*(k+1)/2))+x*O(x^n)),n)} \\ Paul D. Hanna, Jun 28 2008

Formula

Multiplicative with a(p^e) = 3-2^(e+1) if p = 2; (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Sep 01 2001
G.f.: Sum_{n>=1} n*x^n*(1-3*x^n)/(1-x^(2*n)). - Vladeta Jovovic, Oct 15 2002
L.g.f.: Sum_{n>=1} a(n)*x^n/n = log[ Sum_{n>=0} x^(n(n+1)/2) ], the log of the g.f. of A010054. - Paul D. Hanna, Jun 28 2008
Dirichlet g.f. zeta(s)*zeta(s-1)*(1-4/2^s). Dirichlet convolution of A000203 and the quasi-finite (1,-4,0,0,0,...). - R. J. Mathar, Mar 04 2011
a(n) = A000593(n)-A146076(n). - R. J. Mathar, Mar 05 2011
a(n) = Sum_{j = 1..n} Sum_{k = 1..j} (-1)^(j+1)*cos(2*k*n*Pi/j). - Peter Bala, Aug 24 2022
G.f.: Sum_{n>=1} n*(-x)^(n-1)/(1-x^n). - Mamuka Jibladze, Jun 03 2025

Extensions

Better description and more terms from Robert G. Wilson v, Dec 14 2000
More terms from N. J. A. Sloane, Mar 19 2001

A060177 Triangle of generalized sum of divisors function, read by rows.

Original entry on oeis.org

1, 2, 1, 2, 2, 3, 5, 2, 1, 6, 4, 2, 11, 2, 5, 13, 4, 10, 17, 3, 1, 15, 22, 4, 2, 25, 27, 2, 5, 37, 29, 6, 10, 52, 37, 2, 20, 67, 44, 4, 1, 30, 97, 44, 4, 2, 52, 117, 55, 5, 5, 77, 154, 59, 2, 10, 117, 184, 68, 6, 20, 162, 235, 71, 2, 36, 227, 277, 81, 6, 1, 58, 309, 338
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2001

Keywords

Comments

Lengths of rows are 1 1 2 2 2 3 3 3 3 4 4 4 4 4 ... (A003056).

Examples

			Triangle turned on its side begins:
  1  2  2  3  2  4  2  4  3  4  2  6 ...
        1  2  5  6 11 13 17 22 27 29 ...
                 1  2  5 10 15 25 37 ...
                             1  2  5 ...
		

Crossrefs

Cf. A116608 (reflected rows). - Alois P. Heinz, Jan 29 2014

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          expand(b(n, i-1) +x*add(b(n-i*j, i-1), j=1..n/i))))
        end:
    T:= n->(p->seq(coeff(p, x, degree(p)-k), k=0..degree(p)-1))(b(n$2)):
    seq(T(n), n=1..25);  # Alois P. Heinz, Jan 29 2014
  • Mathematica
    Reverse /@ Table[Length /@ Split[ Sort[Map[Length, Split /@ IntegerPartitions[n], {1}]]], {n, 24}] (* Wouter Meeussen, Apr 21 2012, updated by Jean-François Alcover, Jan 29 2014 *)
  • Python
    from math import isqrt
    from itertools import count, islice
    from sympy.utilities.iterables import partitions
    def A060177_gen(): # generator of terms
        return (sum(1 for p in partitions(n) if len(p)==k) for n in count(1) for k in range(isqrt((n<<3)+1)-1>>1,0,-1))
    A060177_list = list(islice(A060177_gen(),30)) # Chai Wah Wu, Sep 15 2023

Formula

T(n,k) = Partitions of n using only k types of piles. Also, Sum_{k=1..A003056(n)} T(n,k)*k = A000070(n). Also, Sum_{k=1..A003056(n)} T(n,k)*(k-1) = A058884(n). - Naohiro Nomoto, Jan 24 2002
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1-q^m_1)*(1-q^m_2)*...*(1-q^m_k)) = Sum_n T(n, k)*q^n.

Extensions

More terms from Naohiro Nomoto, Jan 24 2002

A060043 Triangle T(n,k), n >= 1, k >= 1, of generalized sum of divisors function, read by rows.

Original entry on oeis.org

1, 3, 1, 4, 3, 7, 9, 6, 1, 15, 12, 3, 30, 8, 9, 45, 15, 22, 67, 13, 1, 42, 99, 18, 3, 81, 135, 12, 9, 140, 175, 28, 22, 231, 231, 14, 51, 351, 306, 24, 1, 97, 551, 354, 24, 3, 188, 783, 465, 31, 9, 330, 1134, 540, 18, 22, 568, 1546, 681, 39, 51, 918, 2142, 765, 20
Offset: 1

Views

Author

N. J. A. Sloane, Mar 19 2001

Keywords

Comments

Lengths of rows are 1 1 2 2 2 3 3 3 3 ... (A003056).

Examples

			Triangle turned on its side begins:
1 3 4 7 6 12  8 15 13 18 ...
    1 3 9 15 30 45 67 99 ...
           1  3  9 22 42 ...
                       1 ...
For example, T(6,2) = 15.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, degree(p)-i), i=0..degree(p)-1))(b(n$2)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Jul 21 2025
  • Mathematica
    Clear[diag, m]; nmax = 19; kmax = Floor[(Sqrt[8*nmax+1]-1)/2]; m[0] = 0; diag[k_] := diag[k] = Sum[q^(Sum[m[i], {i, 1, k}])/(Times @@ (1 - q^Array[m, k]))^2, Sequence @@ Table[{m[j], m[j-1]+1, nmax}, {j, 1, k}] // Evaluate] + O[q]^(nmax+1) // CoefficientList[#, q]&; Table[ Select[ Table[diag[k][[j+1]], {k, 1, kmax}], IntegerQ[#] && # > 0&] // Reverse, {j, 1, nmax}] // Flatten (* Jean-François Alcover, Jul 18 2017 *)

Formula

T(n, 1) = sum of divisors of n (A000203), T(n, k) = sum of s_1*s_2*...*s_k where s_1, s_2, ..., s_k are such that s_1*m_1 + s_2*m_2 + ... + s_k*m_k = n and the sum is over all such k-partitions of n.
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1-q^m_1)*(1-q^m_2)*...*(1-q^m_k))^2 = Sum_n T(n, k)*q^n.
G.f. for k-th diagonal: (-1)^k * (1/(2*k+1)) * ( Sum_{j>=k} (-1)^j * (2*j+1) * binomial(j+k,2*k) * q^(j*(j+1)/2) ) / ( Sum_{j>=0} (-1)^j * (2*j+1) * q^(j*(j+1)/2) ). - Seiichi Manyama, Sep 15 2023

Extensions

More terms from Naohiro Nomoto, Jan 24 2002

A060047 Triangle of generalized sum of divisors function, read by rows.

Original entry on oeis.org

1, 2, 4, 1, 4, 2, 6, 4, 8, 8, 8, 14, 8, 1, 18, 13, 2, 28, 12, 4, 40, 12, 8, 52, 16, 14, 70, 14, 24, 88, 16, 40, 104, 24, 1, 56, 140, 16, 2, 84, 168, 18, 4, 122, 196, 26, 8, 168, 240, 20, 14, 232, 278, 24, 24, 312, 320, 32, 40, 408, 380, 24, 64, 528, 440, 24, 100, 672, 504
Offset: 1

Views

Author

N. J. A. Sloane, Mar 19 2001

Keywords

Comments

Lengths of rows are 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 ... (A000196).

Examples

			Triangle turned on its side begins:
  1  2  4  4  6  8  8  8 13 12 12 ...
           1  2  4  8 14 18 28 40 ...
                          1  2  4 ...
For example, T(6,1) = 8, T(6,2) = 4.
		

Crossrefs

Formula

T(n, k) = sum of s_1*s_2*...*s_k where s_1, s_2, ..., s_k are such that s_1*(2*m_1-1) + s_2*(2*m_2-1) + ... + s_k*(2*m_k-1) = n and the sum is over all such k-partitions of n.
G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(2*m_1+2*m_2+...+2*m_k-k)/((1-q^{2*m_1-1})*(1-q^{2*m_2-1})*...*(1-q^{2*m_k-1}))^2 = Sum_n T(n, k)*q^n.
G.f. for k-th diagonal: (-1)^k * (1/k) * ( Sum_{j>=k} (-1)^j * j * binomial(j+k-1,2*k-1) * q^(j^2) ) / ( 1 + 2 * Sum_{j>=1} (-q)^(j^2) ). - Seiichi Manyama, Sep 15 2023

Extensions

More terms from Naohiro Nomoto, Jan 24 2002

A060184 Triangle of generalized sum of divisors function, read by rows.

Original entry on oeis.org

1, 0, 1, 2, 0, -1, 1, 2, 1, 2, 0, 0, 1, 2, 1, 1, -2, 0, 1, 3, 1, 5, 6, 0, 0, -1, -1, 2, 1, 5, 5, -2, 0, -2, -3, 2, 2, 9, 10, 0, 1, 4, 3, 0, 4, 0, 2, 9, 9, -3, 1, 3, -2, -7, 2, 0, 3, 14, 16, 0, 2, 6, -1, -9, 2, 0, 3, 15, 17, -2, 1, 8, 19, 10, -6, 4, 0, -1, 0, 15, 22, 0, 1, 9, 21, 7, -13, 2, 0, -2, -4, 11, 20, -4, 2, 15, 33, 14, -15, 3, 0, -4, -10, 10, 28, 0, 3
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2001

Keywords

Comments

Lengths of rows are 1 1 2 2 2 3 3 3 3 4 4 4 4 4 ... (A003056).

Examples

			Triangle turned on its side begins:
  1  0  2 -1  2  0  2 -2  3  0  2 ...
        1  0  1  2  1  1  1  6 -1 ...
              1  0  1  0  5 -1  5 ...
		

Crossrefs

Programs

  • Mathematica
    max = 27(*rows*); t[n_, k_] := Module[{m, mm, q, s}, mm = Array[m, k]; s = Sum[q^Total[mm]/Times @@ (1+q^mm), Evaluate[Sequence @@ Transpose[{mm, Join[{1}, Most[mm]+1], max-Range[k-1, 0, -1]}]]]; SeriesCoefficient[s, {q, 0, n}]]; Table[Print[an = Table[t[n, k], {k, Floor[(Sqrt[8*n+1]-1)/2], 1, -1}]]; an, {n, 1, max}] // Flatten (* Jean-François Alcover, Jan 21 2014 *)

Formula

G.f. for k-th diagonal (the k-th row of the sideways triangle shown in the example): Sum_{ m_1 < m_2 < ... < m_k} q^(m_1+m_2+...+m_k)/((1+q^m_1)*(1+q^m_2)*...*(1+q^m_k)) = Sum_n T(n, k)*q^n.

Extensions

More terms from Vladeta Jovovic, Sep 20 2007

A002130 Generalized sum of divisors function.

Original entry on oeis.org

1, -1, 1, 3, -2, 1, -5, 23, -25, 27, -49, 74, -62, 85, -132, 165, -195, 229, -240, 325, -374, 379, -469, 553, -590, 746, -805, 854, -1000, 1085, -1168, 1284, -1396, 1668, -1767, 1815, -2030, 2297, -2450, 2480, -2849, 3293, -3113, 3278, -3772, 4091, -4230, 4213, -4830, 5607, -5499, 5430, -6018, 6922, -6880
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060044.

Programs

  • Mathematica
    terms = 55; offset = 3; t[i_] := Sum[x^(n*i)/(1 + x^n)^(2*i), {n, 1, terms + 5}]; s = Series[(t[1]^2 - t[2])/2, {x, 0, terms + 5 }]; A002130 = CoefficientList[s, x][[offset + 1 ;; terms + offset]] (* Jean-François Alcover, Dec 11 2014, after Vladeta Jovovic *)

Formula

G.f.: (t(1)^2-t(2))/2 where t(i) = Sum_{n>=1} x^(n*i)/(1+x^n)^(2*i), i=1..2. - Vladeta Jovovic, Sep 21 2007

Extensions

More terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Sep 21 2007
Showing 1-7 of 7 results.