A104575 Alternating sum of diagonals in A060177.
1, -1, -2, -1, -1, 3, 1, 7, 4, 4, 4, 2, -9, -7, -7, -28, -17, -25, -15, -24, -11, -8, 34, 19, 53, 46, 108, 110, 106, 113, 122, 108, 75, 103, -16, -87, -107, -169, -329, -257, -574, -501, -676, -609, -749, -588, -808, -548, -521, -315, -240, 369, 485, 865, 1099, 1738, 2129, 2686, 3088, 3460, 4103, 4011, 4480, 3983
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
CoefficientList[Series[Product[(1-2x^k)/(1-x^k),{k,70}],{x,0,70}],x] (* Harvey P. Dale, Jan 21 2021 *)
-
PARI
N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-x^k/(1-x^k))) \\ Seiichi Manyama, Oct 05 2019
Formula
G.f.: Product_{i>0} (1 - 2*x^i)/(1 - x^i).
Euler transform of -A008965(n).
Extensions
a(0)=1 prepended by Seiichi Manyama, Oct 05 2019
Comments