A090794
Number of partitions of n such that the number of different parts is odd.
Original entry on oeis.org
1, 2, 2, 3, 2, 5, 4, 9, 13, 19, 27, 43, 54, 71, 102, 124, 161, 200, 257, 319, 400, 484, 618, 761, 956, 1164, 1450, 1806, 2226, 2741, 3367, 4137, 5020, 6163, 7485, 9042, 10903, 13172, 15721, 18956, 22542, 26925, 31935, 37962, 44861, 53183, 62651
Offset: 1
n=6 has A000041(6)=11 partitions: 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1 and 1+1+1+1+1+1 with partition sets: {6}, {1,5}, {2,4}, {1,4}, {3}, {1,2,3}, {1,3}, {2}, {1,2}, {1,2} and {1}, five of them have an odd number of elements, therefore a(6)=5.
A092306
Number of partitions of n such that the set of parts has an even number of elements.
Original entry on oeis.org
1, 0, 0, 1, 2, 5, 6, 11, 13, 17, 23, 29, 34, 47, 64, 74, 107, 136, 185, 233, 308, 392, 518, 637, 814, 1002, 1272, 1560, 1912, 2339, 2863, 3475, 4212, 5123, 6147, 7398, 8935, 10734, 12843, 15464, 18382, 22041, 26249, 31326, 37213, 44273, 52375, 62103, 73376
Offset: 0
The partitions of five are: {{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}, The seven partitions have 1, 2, 2, 2, 2, 2 and 1 distinct parts respectively.
n=6 has A000041(6)=11 partitions: 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1 and 1+1+1+1+1+1 with partition sets: {6}, {1,5}, {2,4}, {1,4}, {3}, {1,2,3}, {1,3}, {2}, {1,2}, {1,2} and {1}, six of them have an even number of elements, therefore a(6)=6.
-
import Data.List (group)
a092306 = length . filter even . map (length . group) . ps 1 where
ps x 0 = [[]]
ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
-- Reinhard Zumkeller, Dec 19 2013
-
b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
b(n, i-1, t) +add(b(n-i*j, i-1, 1-t), j=1..n/i)))
end:
a:= n-> b(n, n, 1):
seq(a(n), n=0..50); # Alois P. Heinz, Jan 29 2014
-
f[n_] := Count[ Mod[ Length /@ Union /@ IntegerPartitions[n], 2], 0]; Table[ f[n], {n, 0, 49}] (* Robert G. Wilson v, Feb 16 2004, updated by Jean-François Alcover, Jan 29 2014 *)
A329157
Expansion of Product_{k>=1} (1 - Sum_{j>=1} j * x^(k*j)).
Original entry on oeis.org
1, -1, -3, -3, -4, 3, 2, 19, 21, 32, 40, 45, 16, 8, -18, -125, -164, -291, -358, -530, -588, -724, -592, -675, -358, -207, 570, 1201, 2208, 3333, 4944, 6490, 8277, 10492, 11800, 13260, 14328, 14722, 12942, 12075, 5640, 603, -10444, -21120, -39360, -55876, -83488
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, b(n, i-1), 0)-
add(b(n-i*j, min(n-i*j, i-1))*j, j=`if`(i=1, n, 1..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..46); # Alois P. Heinz, Jul 18 2025
-
nmax = 46; CoefficientList[Series[Product[(1 - Sum[j x^(k j), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 46; CoefficientList[Series[Product[(1 - x^k/(1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]
A104510
G.f.: Product_{i>=1} (1 - 2*(-x)^i)/(1 - (-x)^i)^2.
Original entry on oeis.org
0, -1, 2, -4, 4, -7, 4, -5, 0, 5, -18, 23, -46, 65, -82, 108, -132, 152, -164, 168, -144, 132, -48, -39, 212, -365, 658, -947, 1382, -1800, 2394, -2947, 3644, -4289, 5102, -5687, 6392, -6820, 7112, -7139, 6776, -5836, 4338, -2036, -1342, 5585, -11392, 18513, -27456, 37876, -51072, 65488, -82982, 101898
Offset: 1
-
gf:=product((1-2*(-x)^i)/(1-(-x)^i)^2, i=1..100): s:=series(gf, x, 100): for n from 1 to 99 do printf(`%d,`,coeff(s, x, n)) od: # James Sellers, Apr 22 2005
Showing 1-4 of 4 results.
Comments