cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A090794 Number of partitions of n such that the number of different parts is odd.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 4, 9, 13, 19, 27, 43, 54, 71, 102, 124, 161, 200, 257, 319, 400, 484, 618, 761, 956, 1164, 1450, 1806, 2226, 2741, 3367, 4137, 5020, 6163, 7485, 9042, 10903, 13172, 15721, 18956, 22542, 26925, 31935, 37962, 44861, 53183, 62651
Offset: 1

Views

Author

Vladeta Jovovic, Feb 12 2004

Keywords

Examples

			n=6 has A000041(6)=11 partitions: 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1 and 1+1+1+1+1+1 with partition sets: {6}, {1,5}, {2,4}, {1,4}, {3}, {1,2,3}, {1,3}, {2}, {1,2}, {1,2} and {1}, five of them have an odd number of elements, therefore a(6)=5.
		

Crossrefs

Programs

  • Haskell
    import Data.List (group)
    a090794 = length . filter odd . map (length . group) . ps 1 where
       ps x 0 = [[]]
       ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
    -- Reinhard Zumkeller, Dec 19 2013

Formula

a(n) = b(n, 1, 0, 0) with b(n, i, j, f) = if iReinhard Zumkeller, Feb 19 2004
G.f.: F(x)*G(x)/2, where F(x) = 1-Product(1-2*x^i, i=1..infinity) and G(x) = 1/Product(1-x^i, i=1..infinity).
a(n) = (A000041(n)-A104575(n))/2.
G.f. A(x) equals the off-diagonal entries in the 2 X 2 matrix Product_{n >= 1} [1, x^n/(1 - x^n); x^n/(1 - x^n), 1] = [B(x), A(x); A(x), B(x)], where B(x) is the g.f. of A092306. - Peter Bala, Feb 10 2021

Extensions

More terms from Reinhard Zumkeller, Feb 17 2004
Definition simplified and shortened by Jonathan Sondow, Oct 13 2013

A092306 Number of partitions of n such that the set of parts has an even number of elements.

Original entry on oeis.org

1, 0, 0, 1, 2, 5, 6, 11, 13, 17, 23, 29, 34, 47, 64, 74, 107, 136, 185, 233, 308, 392, 518, 637, 814, 1002, 1272, 1560, 1912, 2339, 2863, 3475, 4212, 5123, 6147, 7398, 8935, 10734, 12843, 15464, 18382, 22041, 26249, 31326, 37213, 44273, 52375, 62103, 73376
Offset: 0

Views

Author

Vladeta Jovovic, Feb 12 2004

Keywords

Examples

			The partitions of five are: {{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}, The seven partitions have 1, 2, 2, 2, 2, 2 and 1 distinct parts respectively.
n=6 has A000041(6)=11 partitions: 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1 and 1+1+1+1+1+1 with partition sets: {6}, {1,5}, {2,4}, {1,4}, {3}, {1,2,3}, {1,3}, {2}, {1,2}, {1,2} and {1}, six of them have an even number of elements, therefore a(6)=6.
		

Crossrefs

Programs

  • Haskell
    import Data.List (group)
    a092306 = length . filter even . map (length . group) . ps 1 where
       ps x 0 = [[]]
       ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
    -- Reinhard Zumkeller, Dec 19 2013
  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
           b(n, i-1, t) +add(b(n-i*j, i-1, 1-t), j=1..n/i)))
        end:
    a:= n-> b(n, n, 1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 29 2014
  • Mathematica
    f[n_] := Count[ Mod[ Length /@ Union /@ IntegerPartitions[n], 2], 0]; Table[ f[n], {n, 0, 49}] (* Robert G. Wilson v, Feb 16 2004, updated by Jean-François Alcover, Jan 29 2014 *)

Formula

a(n) = b(n, 1, 0, 1) with b(n, i, j, f) = if iReinhard Zumkeller, Feb 19 2004
G.f.: F(x)*G(x)/2, where F(x) = 1+Product(1-2*x^i, i=1..infinity) and G(x) = 1/Product(1-x^i, i=1..infinity).
a(n) = (A000041(n)+A104575(n))/2.
G.f. A(x) equals the main diagonal entries in the 2 X 2 matrix Product_{n >= 1} [1, x^n/(1 - x^n); x^n/(1 - x^n), 1] = [A(x), B(x); B(x), A(x)], where B(x) is the g.f. of A090794. - Peter Bala, Feb 10 2021

Extensions

More terms from Robert G. Wilson v, Feb 16 2004

A329157 Expansion of Product_{k>=1} (1 - Sum_{j>=1} j * x^(k*j)).

Original entry on oeis.org

1, -1, -3, -3, -4, 3, 2, 19, 21, 32, 40, 45, 16, 8, -18, -125, -164, -291, -358, -530, -588, -724, -592, -675, -358, -207, 570, 1201, 2208, 3333, 4944, 6490, 8277, 10492, 11800, 13260, 14328, 14722, 12942, 12075, 5640, 603, -10444, -21120, -39360, -55876, -83488
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2019

Keywords

Comments

Convolution inverse of A329156.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, b(n, i-1), 0)-
          add(b(n-i*j, min(n-i*j, i-1))*j, j=`if`(i=1, n, 1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..46);  # Alois P. Heinz, Jul 18 2025
  • Mathematica
    nmax = 46; CoefficientList[Series[Product[(1 - Sum[j x^(k j), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 46; CoefficientList[Series[Product[(1 - x^k/(1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 - x^k / (1 - x^k)^2).
G.f.: exp(-Sum_{k>=1} ( Sum_{d|k} 1 / (d * (1 - x^(k/d))^(2*d)) ) * x^k).
G.f.: Product_{k>=1} (1 - x^k)^A032198(k).
G.f.: A(x) = Product_{k>=1} 1 / B(x^k), where B(x) = g.f. of A088305.
a(n) = Sum_{k=0..A003056(n)} (-1)^k * A385001(n,k). - Alois P. Heinz, Jul 18 2025

A104510 G.f.: Product_{i>=1} (1 - 2*(-x)^i)/(1 - (-x)^i)^2.

Original entry on oeis.org

0, -1, 2, -4, 4, -7, 4, -5, 0, 5, -18, 23, -46, 65, -82, 108, -132, 152, -164, 168, -144, 132, -48, -39, 212, -365, 658, -947, 1382, -1800, 2394, -2947, 3644, -4289, 5102, -5687, 6392, -6820, 7112, -7139, 6776, -5836, 4338, -2036, -1342, 5585, -11392, 18513, -27456, 37876, -51072, 65488, -82982, 101898
Offset: 1

Views

Author

Vladeta Jovovic, Apr 19 2005

Keywords

Crossrefs

Programs

  • Maple
    gf:=product((1-2*(-x)^i)/(1-(-x)^i)^2, i=1..100): s:=series(gf, x, 100): for n from 1 to 99 do printf(`%d,`,coeff(s, x, n)) od: # James Sellers, Apr 22 2005

Formula

a(n) = Sum (k(1)-1)*(k(2)-1)*...*(k(n)-1), where the sum is taken over all (k(1), k(2), ..., k(n)) such that k(1) + 2*k(2) + ... + n*k(n) = n, k(i) >= 0, i=1..n.
G.f.: Product_{i>=1} (1 - (-x)^i)^A052823(i). - James Sellers, Apr 22 2005

Extensions

More terms from James Sellers, Apr 22 2005
Showing 1-4 of 4 results.