cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 84 results. Next

A161800 G.f.: A(q) = exp( Sum_{n>=1} A002129(n) * 2*A006519(n) * q^n/n ).

Original entry on oeis.org

1, 2, 0, 0, -6, -16, 0, 0, -8, 18, 0, 0, 112, 176, 0, 0, -86, -544, 0, 0, -752, -160, 0, 0, 1360, 2834, 0, 0, 1216, -5104, 0, 0, -5384, 3232, 0, 0, 10762, 18032, 0, 0, -8176, -68992, 0, 0, -59888, 48400, 0, 0, 130160, 143074, 0, 0, 47696, -343088, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2009

Keywords

Comments

A002129 forms the l.g.f. of log[ Sum_{n>=0} q^(n(n+1)/2) ], while
2*A006519 forms the l.g.f. of binary partitions (A000123) and
A006519(n) is the highest power of 2 dividing n.

Examples

			G.f.: A(q) = 1 + 2*q - 6*q^4 - 16*q^5 - 8*q^8 + 18*q^9 + 112*q^12 + 176*q^13 +...
log(A(q)) = 2*q - 4*q^2/2 + 8*q^3/3 - 40*q^4/4 + 12*q^5/5 - 16*q^6/6 +...
Sum_{n>=1} A002129(n)*q^n/n = log(1 + q + q^3 + q^6 + q^10 + q^15 +...),
Sum_{n>=1} 2*A006519(n)*x^n/n = log of the g.f. of binary partitions A000123.
QUADRASECTIONS:
Q_0(q) = 1 - 6*q - 8*q^2 + 112*q^3 - 86*q^4 - 752*q^5 + 1360*q^6 +...
Q_1(q) = 2 - 16*q + 18*q^2 + 176*q^3 - 544*q^4 - 160*q^5 + 2834*q^6 +...
The ratio Q_1(q)/Q_0(q) yields:
2 - 4*q + 10*q^2 - 20*q^3 + 36*q^4 - 64*q^5 + 110*q^6 - 180*q^7 +...
which appears to equal the g.f. of A127392.
		

Crossrefs

Cf. A127392, quadrasections: A161801, A161802.

Programs

  • PARI
    {a(n)=local(L=sum(m=1, n,2*2^valuation(m,2)*sumdiv(m, d, -(-1)^d*d)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}

Formula

a(n) = 0 when n == 2 or 3 (mod 4).
Define the nonzero series QUADRASECTIONS:
Q_0(q) = Sum_{n>=0} a(4n)*q^n,
Q_1(q) = Sum_{n>=0} a(4n+1)*q^n, then:
Q_1(q)/Q_0(q) = series expansion of the elliptic function sqrt(k)/q^(1/4), where sqrt(k) = theta_2/theta_3, as described by A127392.
[The above statements are conjectures needing proof.]

A161804 G.f.: A(q) = exp( Sum_{n>=1} A002129(n) * 3*A038500(n) * q^n/n ).

Original entry on oeis.org

1, 3, 3, 12, 30, 27, 66, 141, 111, 255, 513, 378, 903, 1815, 1356, 2970, 5727, 4131, 8571, 15882, 10881, 23001, 42417, 29106, 59763, 108165, 73500, 145164, 255831, 167643, 333693, 585258, 382053, 751059, 1302966, 849339, 1623009, 2762349
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2009

Keywords

Comments

A002129 forms the l.g.f. of log[ Sum_{n>=0} x^(n(n+1)/2) ], while 3*A038500 forms the l.g.f. of the log of the g.f. of A161809 and A038500(n) is the highest power of 3 dividing n.

Examples

			G.f.: A(q) = 1 + 3*q + 3*q^2 + 12*q^3 + 30*q^4 + 27*q^5 + 66*q^6 + ...
log(A(q)) = 3*q - 3*q^2 + 36*q^3 - 15*q^4 + 18*q^5 - 36*q^6 + 24*q^7 + ...
Sum_{n>=1} A002129(n)*q^n/n = log(1 + q + q^3 + q^6 + q^10 + q^15 + ...),
Sum_{n>=1} 3*A038500(n)*x^n/n = log of the g.f. of A161809.
TRISECTIONS:
T_0(q) = 1 + 12*q + 66*q^2 + 255*q^3 + 903*q^4 + 2970*q^5 + ... (A161805)
T_1(q) = 3 + 30*q + 141*q^2 + 513*q^3 + 1815*q^4 + 5727*q^5 + ... (A161806)
T_2(q) = 3 + 27*q + 111*q^2 + 378*q^3 + 1356*q^4 + 4131*q^5 + ... (A161807)
where T_1(-q)/T_0(-q)/3 equals (cf. A132977):
1 + 2*q + 5*q^2 + 12*q^3 + 26*q^4 + 50*q^5 + 92*q^6 + 168*q^7 + ...
and T_2(-q)/T_0(-q)/3 equals (cf. A132978):
1 + 3*q + 7*q^2 + 15*q^3 + 32*q^4 + 63*q^5 + 114*q^6 + 201*q^7 + ...
also, T_2(q)/T_1(q) equals (cf. A092848):
1 - q + 2*q^3 - 2*q^4 - q^5 + 4*q^6 - 4*q^7 - q^8 + 8*q^9 - 8*q^10 + ...
		

Crossrefs

Cf. trisections: A161805 (T_0), A161806 (T_1), A161807 (T_2).
Cf. A132977 (T_1/T_0), A132978 (T_2/T_0), A092848 (T_2/T_1).
Cf. A002129, A038500, A161809, A161800 (variant).

Programs

  • PARI
    {a(n)=local(L=sum(m=1, n,3*3^valuation(m,3)*sumdiv(m, d, -(-1)^d*d)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}

Formula

Given trisections where A(q) = T_0(q^3) + q*T_1(q^3) + q^2*T_2(q^3):
T_0(q) = Sum_{n>=0} a(3n)*q^n,
T_1(q) = Sum_{n>=0} a(3n+1)*q^n,
T_2(q) = Sum_{n>=0} a(3n+2)*q^n,
then it appears that:
T_1(-q)/T_0(-q) = 3*q^(-1/3)*(eta(q^6)^4/(eta(q)*eta(q^3)*eta(q^4)*eta(q^12)))^2 (Cf. A132977);
T_2(-q)/T_0(-q) = 3*q^(-2/3)*(eta(q^2)*eta(q^6))^2*eta(q^3)*eta(q^12)/(eta(q)*eta(q^4))^3 (cf. A132978);
T_2(q)/T_1(q) = g.f. of A092848, the reciprocal of Hauptmodul for Gamma_0(18).

A225925 G.f.: exp( Sum_{n>=1} A002129(n^2)*x^n/n ), where A002129(n) is the excess of sum of odd divisors of n over sum of even divisors of n.

Original entry on oeis.org

1, 1, -2, 2, -1, -7, 8, -14, 1, 11, -23, 43, -54, 38, 17, -55, 162, -198, 257, -175, 69, 141, -518, 764, -1049, 1215, -1241, 549, 161, -1625, 3192, -5176, 6782, -7568, 7267, -4263, -788, 8394, -17866, 29782, -39041, 46101, -45857, 36551, -14591, -20937, 70638, -129520, 190994, -245846, 280560
Offset: 0

Views

Author

Paul D. Hanna, May 20 2013

Keywords

Comments

Compare to: Sum_{n>=0} x^(n*(n+1)/2) = exp( Sum_{n>=1} A002129(n)*x^n/n ).

Examples

			G.f.: A(x) = 1 + x - 2*x^2 + 2*x^3 - x^4 - 7*x^5 + 8*x^6 - 14*x^7 + x^8 +...
where
log(A(x)) = x - 5*x^2/2 + 13*x^3/3 - 29*x^4/4 + 31*x^5/5 - 65*x^6/6 + 57*x^7/7 - 125*x^8/8 + 121*x^9/9 - 155*x^10/10 +...+ A002129(n^2)*x^n/n +...
		

Crossrefs

Cf. A224340, A224339, A002129; variant: A215603.

Programs

  • PARI
    {A002129(n)=if(n<1, 0, -sumdiv(n, d, (-1)^d*d))}
    {a(n)=polcoeff(exp(sum(k=1,n,A002129(k^2)*x^k/k)+x*O(x^n)),n)}
    for(n=0,50,print1(a(n),", "))

A162419 a(n) = sigma(n)*|A002129(n)| where sigma(n) = A000203(n).

Original entry on oeis.org

1, 3, 16, 35, 36, 48, 64, 195, 169, 108, 144, 560, 196, 192, 576, 899, 324, 507, 400, 1260, 1024, 432, 576, 3120, 961, 588, 1600, 2240, 900, 1728, 1024, 3843, 2304, 972, 2304, 5915, 1444, 1200, 3136, 7020, 1764, 3072, 1936, 5040, 6084, 1728, 2304, 14384
Offset: 1

Views

Author

Paul D. Hanna, Jul 03 2009

Keywords

Comments

A002129 forms the l.g.f. of log(Sum_{n>=0} x^(n(n+1)/2)), while A000203 forms the l.g.f. of log(1/eta(x)) where eta(x)^3 = Sum_{n>=0} (-1)^n*(2n+1)*x^(n*(n+1)/2).

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 16*x^3/3 + 35*x^4/4 + 36*x^5/5 + 48*x^6/6 + ... where exp(L(x)) is the g.f. of A162420:
exp(L(x)) = 1 + x + 2*x^2 + 7*x^3 + 16*x^4 + 28*x^5 + 57*x^6 + ...
...
Equals the term-wise product of the (unsigned) sequences:
A000203:[1, 3,4, 7,6,12,8, 15,13,18,12, 28,14,24,24, 31,18,...];
A002129:[1,-1,4,-5,6,-4,8,-13,13,-6,12,-20,14,-8,24,-29,18,...].
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, (2^(e + 1) - 1) * (2^(e + 1) - 3), ((p^(e + 1) - 1)/(p - 1))^2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 48] (* Amiram Eldar, Jul 20 2019 *)
  • PARI
    a(n)=sigma(n)*sumdiv(n, d, (-1)^(n-d)*d)

Formula

a(2n-1) = sigma(2n-1)^2.
L.g.f.: L(x) = log(G(x)) where G(x) is the g.f. of A162420.
From Amiram Eldar, Dec 01 2022: (Start)
Multiplicative with a(2^e) = (2^(e+1)-1)*(2^(e+1)-3), and a(p^e) = ((p^(e+1)-1)/(p - 1))^2 for p > 2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 29*zeta(3)/48 = 0.726242... . (End)
Dirichlet g.f.: (zeta(s)*zeta(s-1)^2*zeta(s-2)/zeta(2*s-2))*(7*2^(2-s)-4^(2-s)+2^s-4)/(2^s+2). - Amiram Eldar, Jan 06 2023

A162420 G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*|A002129(n)|*x^n/n ).

Original entry on oeis.org

1, 1, 2, 7, 16, 28, 57, 118, 238, 432, 792, 1491, 2759, 4836, 8522, 15126, 26419, 45114, 76883, 130792, 220578, 367144, 608252, 1005102, 1649904, 2684354, 4349068, 7022762, 11278628, 18002603, 28621347, 45345249, 71528789, 112295812
Offset: 0

Views

Author

Paul D. Hanna, Jul 03 2009

Keywords

Comments

A002129 forms the l.g.f. of log[ Sum_{n>=0} x^(n(n+1)/2) ], while
A000203 forms the l.g.f. of log[ 1/eta(x) ]
where eta(x)^3 = Sum_{n>=0} (-1)^n*(2n+1)*x^(n(n+1)/2).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 16*x^4 + 28*x^5 + 57*x^6 +...
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 35*x^4/4 + 36*x^5/5 + 48*x^6/6 +...
where log(A(x)) is the l.g.f. of A162419 and
log(A(x)) = 1*1*x + 3*1*x^2/2 + 4*4*x^3/3 + 7*5*x^4/4 + 6*6*x^5/5 +...
is formed from the term-wise product of the (unsigned) sequences:
A000203:[1, 3,4, 7,6,12,8, 15,13,18,12, 28,14,24,24, 31,18,...];
A002129:[1,-1,4,-5,6,-4,8,-13,13,-6,12,-20,14,-8,24,-29,18,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=sum(m=1,n,sigma(m)*sumdiv(m, d, (-1)^(m-d)*d)*x^m/m)+x*O(x^n)); polcoeff(exp(L),n)}

Formula

G.f.: A(x) = exp( L(x) ) where L(x) is the l.g.f. of A162419.

A348583 Numbers k such that k | A002129(k).

Original entry on oeis.org

1, 60, 728, 6960, 60512, 97152, 728000, 1900080, 2184000, 4371840, 26522496, 843480000, 23009688000, 46352390400, 93155148800, 279465446400, 701869363200, 938948846080, 1099176108032, 2816846538240
Offset: 1

Views

Author

Amiram Eldar, Oct 24 2021

Keywords

Comments

Equivalently, numbers k such that k | A113184(k).
The corresponding ratios A002129(k)/k are 1, -2, -2, -3, -2, -3, -3, -4, -4, -4, -4, -4, -4, -4, -3, -4, -4, -3, -2, -4, ...
If p is a Mersenne exponent (A000043), and the corresponding Mersenne prime (A000668) M_p = 2^p - 1 is in A005382 or A167917, i.e., 2*M_p - 1 is also a prime, then 2^p*(2^p-1)*(2^(p+1)-3) is a term. The corresponding known terms of this form are 60, 728, 60512, 1099176108032 and 288229001763749888.
If a term k is odd, then A002129(k) = A000203(k) and thus k is a multiply-perfect number. Therefore, the odd perfect numbers, if they exist, are terms of this sequence.

Examples

			60 is a term since A002129(60) = -120 is divisible by 60.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 2^(e + 1)-3, (p^(e + 1) - 1)/(p - 1)]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^5], Divisible[s[#], #] &]

Extensions

a(20) from Martin Ehrenstein, Nov 06 2021

A010054 a(n) = 1 if n is a triangular number, otherwise 0.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

This is essentially the q-expansion of the Jacobi theta function theta_2(q). (In theta_2 one has to ignore the initial factor of 2*q^(1/4) and then replace q by q^(1/2). See also A005369.) - N. J. A. Sloane, Aug 03 2014
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Ramanujan's theta function f(a, b) = Sum_{n=-inf..inf} a^(n*(n+1)/2) * b^(n*(n-1)/2).
This sequence is the concatenation of the base-b digits in the sequence b^n, for any base b >= 2. - Davis Herring (herring(AT)lanl.gov), Nov 16 2004
Number of partitions of n into distinct parts such that the greatest part equals the number of all parts, see also A047993; a(n)=A117195(n,0) for n > 0; a(n) = 1-A117195(n,1) for n > 1. - Reinhard Zumkeller, Mar 03 2006
Triangle T(n,k), 0 <= k <= n, read by rows, given by A000007 DELTA A000004 where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 03 2009
Convolved with A000041 = A022567, the convolution square of A000009. - Gary W. Adamson, Jun 11 2009
A008441(n) = Sum_{k=0..n} a(k)*a(n-k). - Reinhard Zumkeller, Nov 03 2009
Polcoeff inverse with alternate signs = A006950: (1, 1, 1, 2, 3, 4, 5, 7, ...). - Gary W. Adamson, Mar 15 2010
This sequence is related to Ramanujan's two-variable theta functions because this sequence is also the characteristic function of generalized hexagonal numbers. - Omar E. Pol, Jun 08 2012
Number 3 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016
Number of partitions of n into consecutive parts that contain 1 as a part, n >= 1. - Omar E. Pol, Nov 27 2020
The constant whose decimal expansion is this sequence is irrational (Mahler, 1981). The constant whose expansion in any base b >= 2 is this sequence is irrational (Bundschuh, 1984). - Amiram Eldar, Mar 23 2025

Examples

			G.f. = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + x^28 + x^36 + x^45 + x^55 + x^66 + ...
G.f. for B(q) = q * A(q^8): q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + q^225 + q^289 + q^361 + ...
From _Philippe Deléham_, Jan 04 2008: (Start)
As a triangle this begins:
  1;
  1, 0;
  1, 0, 0;
  1, 0, 0, 0;
  1, 0, 0, 0, 0;
  1, 0, 0, 0, 0, 0;
  ...  (End)
		

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1999, p. 103.
  • Michael D. Hirschhorn, The Power of q, Springer, 2017. See Psi, page 9.
  • Jules Tannery and Jules Molk, Eléments de la Théorie des Fonctions Elliptiques, Vol. 2, Gauthier-Villars, Paris, 1902; Chelsea, NY, 1972, see p. 27.
  • Edmund T. Whittaker and George N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1963, p. 464.

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.
Cf. A106507 (reciprocal series).

Programs

  • Clojure
    (def A010054 (mapcat #(cons 1 (replicate % 0)) (range))) ; Tony Zorman, Apr 03 2023
  • Haskell
    a010054 = a010052 . (+ 1) . (* 8)
    a010054_list = concatMap (\x -> 1 : replicate x 0) [0..]
    -- Reinhard Zumkeller, Feb 12 2012, Oct 22 2011, Apr 02 2011
    
  • Magma
    Basis( ModularForms( Gamma0(16), 1/2), 362) [2] ; /* Michael Somos, Jun 10 2014 */
    
  • Maple
    A010054 := proc(n)
        if issqr(1+8*n) then
            1;
        else
            0;
        end if;
    end proc:
    seq(A010054(n),n=0..80) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a[ n_] := SquaresR[ 1, 8 n + 1] / 2; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), x^2], {x, 0, n + Floor @ Sqrt[n]}] // Normal // TrigToExp) /. {y -> x}, {x, 0, n}]]; (* Michael Somos, Nov 15 2011 *)
    Table[If[IntegerQ[(Sqrt[8n+1]-1)/2],1,0],{n,0,110}] (* Harvey P. Dale, Oct 29 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^(1/2)] / (2 q^(1/8)), {q, 0, n}]; (* Michael Somos, Jul 01 2014 *)
    Module[{tr=Accumulate[Range[20]]},If[MemberQ[tr,#],1,0]&/@Range[Max[tr]]] (* Harvey P. Dale, Mar 13 2023 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / eta(x + A), n))}; /* Michael Somos, Mar 14 2011 */
    
  • PARI
    {a(n) = issquare( 8*n + 1)}; /* Michael Somos, Apr 27 2000 */
    
  • PARI
    a(n) = ispolygonal(n, 3); \\ Michel Marcus, Jan 22 2015
    
  • Python
    from sympy import integer_nthroot
    def A010054(n): return int(integer_nthroot((n<<3)+1,2)[1]) # Chai Wah Wu, Nov 15 2022
    
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(-1, 0)
    a = EulerTransform(b)
    print([a(n) for n in range(88)]) # Peter Luschny, Nov 17 2022
    

Formula

Expansion of f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of q^(-1) * (phi(q) - phi(q^4)) / 2 in powers of q^8. - Michael Somos, Jul 01 2014
Expansion of q^(-1/8) * eta(q^2)^2 / eta(q) in powers of q. - Michael Somos, Apr 13 2005
Euler transform of period 2 sequence [ 1, -1, ...]. - Michael Somos, Mar 24 2003
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u6^3 + u2*u3^3 - u1*u2^2*u6. - Michael Somos, Apr 13 2005
a(n) = b(8*n + 1) where b()=A098108() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p > 2. - Michael Somos, Jun 06 2005
a(n) = A005369(2*n). - Michael Somos, Apr 29 2003
G.f.: theta_2(sqrt(q)) / (2 * q^(1/8)).
G.f.: 1 / (1 - x / (1 + x / (1 + x^1 / (1 - x / (1 + x / (1 + x^2 / (1 - x / (1 + x / (1 + x^3 / ...))))))))). - Michael Somos, May 11 2012
G.f.: Product_{k>0} (1-x^(2*k))/(1-x^(2*k-1)). - Vladeta Jovovic, May 02 2002
a(0)=1; for n>0, a(n) = A002024(n+1)-A002024(n). - Benoit Cloitre, Jan 05 2004
G.f.: Sum_{j>=0} Product_{k=0..j} x^j. - Jon Perry, Mar 30 2004
a(n) = floor((1-cos(Pi*sqrt(8*n+1)))/2). - Carl R. White, Mar 18 2006
a(n) = round(sqrt(2n+1)) - round(sqrt(2n)). - Hieronymus Fischer, Aug 06 2007
a(n) = ceiling(2*sqrt(2n+1)) - floor(2*sqrt(2n)) - 1. - Hieronymus Fischer, Aug 06 2007
a(n) = f(n,0) with f(x,y) = if x > 0 then f(x-y,y+1), otherwise 0^(-x). - Reinhard Zumkeller, Sep 27 2008
a(n) = A035214(n) - 1.
From Mikael Aaltonen, Jan 22 2015: (Start)
Since the characteristic function of s-gonal numbers is given by floor(sqrt(2n/(s-2) + ((s-4)/(2s-4))^2) + (s-4)/(2s-4)) - floor(sqrt(2(n-1)/(s-2) + ((s-4)/(2s-4))^2) + (s-4)/(2s-4)), by setting s = 3 we get the following: For n > 0, a(n) = floor(sqrt(2*n+1/4)-1/2) - floor(sqrt(2*(n-1)+1/4)-1/2).
(End)
a(n) = (-1)^n * A106459(n). - Michael Somos, May 04 2016
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 2^(-1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A002448. - Michael Somos, May 05 2016
G.f.: Sum_{n >= 0} x^(n*(n+1)/2) = Product_{n >= 1} (1 - x^n)*(1 + x^n)^2 = Product_{n >= 1} (1 - x^(2*n))*(1 + x^n) = Product_{n >= 1} (1 - x^(2*n))/(1 - x^(2*n-1)). From the sum and product representations of theta_2(0, sqrt(q))/(2*q^(1/8)) function. The last product, given by Vladeta Jovovic above, is obtained from the second to last one by an Euler identity, proved via f(x) := Product_{n >= 1} (1 - x^(2*n-1))*Product_{n >= 1} (1 + x^n) = f(x^2), by moving the odd-indexed factors of the second product to the first product. This leads to f(x) = f(0) = 1. - Wolfdieter Lang, Jul 05 2016
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 08 2017
G.f.: Sum_{n >= 0} x^n * Product_{k >= n+1} (1 - x^(2*k)) = 1/(1 - x) * Sum_{n >= 0} x^(3*n) * Product_{k >= n+1} (1 - x^(2*k)) = 1/((1 - x)*(1 - x^3)) * Sum_{n >= 0} x^(5*n) * Product_{k >= n+1} (1 - x^(2*k)) = .... - Peter Bala, Jun 24 2025

Extensions

Additional comments from Michael Somos, Apr 27 2000

A000593 Sum of odd divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 13, 6, 12, 4, 14, 8, 24, 1, 18, 13, 20, 6, 32, 12, 24, 4, 31, 14, 40, 8, 30, 24, 32, 1, 48, 18, 48, 13, 38, 20, 56, 6, 42, 32, 44, 12, 78, 24, 48, 4, 57, 31, 72, 14, 54, 40, 72, 8, 80, 30, 60, 24, 62, 32, 104, 1, 84, 48, 68, 18, 96, 48, 72, 13, 74, 38, 124
Offset: 1

Views

Author

Keywords

Comments

Denoted by Delta(n) or Delta_1(n) in Glaisher 1907. - Michael Somos, May 17 2013
A069289(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A001227 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
For the g.f.s given below by Somos Oct 29 2005, Jovovic, Oct 11 2002 and Arndt, Nov 09 2010, see the Hardy-Wright reference, proof of Theorem 382, p. 312, with x^2 replaced by x. - Wolfdieter Lang, Dec 11 2016
a(n) is also the total number of parts in all partitions of n into an odd number of equal parts. - Omar E. Pol, Jun 04 2017
It seems that a(n) divides A000203(n) for every n. - Ivan N. Ianakiev, Nov 25 2017 [Yes, see the formula dated Dec 14 2017].
Also, alternating row sums of A126988. - Omar E. Pol, Feb 11 2018
Where a(n) shows the number of equivalence classes of Hurwitz quaternions with norm n (equivalence defined by right multiplication with one of the 24 Hurwitz units as in A055672), A046897(n) seems to give the number of equivalence classes of Lipschitz quaternions with norm n (equivalence defined by right multiplication with one of the 8 Lipschitz units). - R. J. Mathar, Aug 03 2025

Examples

			G.f. = x + x^2 + 4*x^3 + x^4 + 6*x^5 + 4*x^6 + 8*x^7 + x^8 + 13*x^9 + 6*x^10 + 12*x^11 + ...
		

References

  • Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 496, pp. 69-246, Ellipses, Paris, 2004.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003, p. 312.
  • Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and Modular Forms, Vieweg, 1994, p. 133.
  • John Riordan, Combinatorial Identities, Wiley, 1968, p. 187.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000005, A000203, A000265, A001227, A006128, A050999, A051000, A051001, A051002, A065442, A078471 (partial sums), A069289, A247837 (subset of the primes).

Programs

  • Haskell
    a000593 = sum . a182469_row  -- Reinhard Zumkeller, May 01 2012, Jul 25 2011
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[j*x^j/(1+x^j): j in [1..2*m]])  )); // G. C. Greubel, Nov 07 2018
    
  • Magma
    [&+[d:d in Divisors(n)|IsOdd(d)]:n in [1..75]]; // Marius A. Burtea, Aug 12 2019
    
  • Maple
    A000593 := proc(n) local d,s; s := 0; for d from 1 by 2 to n do if n mod d = 0 then s := s+d; fi; od; RETURN(s); end;
  • Mathematica
    Table[a := Select[Divisors[n], OddQ[ # ]&]; Sum[a[[i]], {i, 1, Length[a]}], {n, 1, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    f[n_] := Plus @@ Select[ Divisors@ n, OddQ]; Array[f, 75] (* Robert G. Wilson v, Jun 19 2011 *)
    a[ n_] := If[ n < 1, 0, Sum[ -(-1)^d n / d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# n / # &]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Times @@ (If[ # < 3, 1, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger @ n)]; (* Michael Somos, Aug 15 2015 *)
    Array[Total[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] &, {75}] (* Michael De Vlieger, Apr 07 2016 *)
    Table[SeriesCoefficient[n Log[QPochhammer[-1, x]], {x, 0, n}], {n, 1, 75}] (* Vladimir Reshetnikov, Nov 21 2016 *)
    Table[DivisorSum[n,#&,OddQ[#]&],{n,80}] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(d+1) * n/d))}; /* Michael Somos, May 29 2005 */
    
  • PARI
    N=66; x='x+O('x^N); Vec( serconvol( log(prod(j=1,N,1+x^j)), sum(j=1,N,j*x^j)))  /* Joerg Arndt, May 03 2008, edited by M. F. Hasler, Jun 19 2011 */
    
  • PARI
    s=vector(100);for(n=1,100,s[n]=sumdiv(n,d,d*(d%2)));s /* Zak Seidov, Sep 24 2011*/
    
  • PARI
    a(n)=sigma(n>>valuation(n,2)) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import factorint
    def A000593(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) # Chai Wah Wu, Sep 09 2021
  • Sage
    [sum(k for k in divisors(n) if k % 2) for n in (1..75)] # Giuseppe Coppoletta, Nov 02 2016
    

Formula

Inverse Moebius Transform of [0, 1, 0, 3, 0, 5, ...].
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s)).
a(2*n) = A000203(2*n)-2*A000203(n), a(2*n+1) = A000203(2*n+1). - Henry Bottomley, May 16 2000
a(2*n) = A054785(2*n) - A000203(2*n). - Reinhard Zumkeller, Apr 23 2008
Multiplicative with a(p^e) = 1 if p = 2, (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n} (-1)^(d+1)*n/d, Dirichlet convolution of A062157 with A000027. - Vladeta Jovovic, Sep 06 2002
Sum_{k=1..n} a(k) is asymptotic to c*n^2 where c=Pi^2/24. - Benoit Cloitre, Dec 29 2002
G.f.: Sum_{n>0} n*x^n/(1+x^n). - Vladeta Jovovic, Oct 11 2002
G.f.: (theta_3(q)^4 + theta_2(q)^4 -1)/24.
G.f.: Sum_{k>0} -(-x)^k / (1 - x^k)^2. - Michael Somos, Oct 29 2005
a(n) = A050449(n)+A050452(n); a(A000079(n))=1; a(A005408(n))=A000203(A005408(n)). - Reinhard Zumkeller, Apr 18 2006
From Joerg Arndt, Nov 09 2010: (Start)
G.f.: Sum_{n>=1} (2*n-1) * q^(2*n-1) / (1-q^(2*n-1)).
G.f.: deriv(log(P)) = deriv(P)/P where P = Product_{n>=1} (1 + q^n). (End)
Dirichlet convolution of A000203 with [1,-2,0,0,0,...]. - R. J. Mathar, Jun 28 2011
a(n) = Sum_{k = 1..A001227(n)} A182469(n,k). - Reinhard Zumkeller, May 01 2012
G.f.: -1/Q(0), where Q(k) = (x-1)*(1-x^(2*k+1)) + x*(-1 +x^(k+1))^4/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) = Sum_{k=1..n} k*A000009(k)*A081362(n-k). - Mircea Merca, Feb 26 2014
a(n) = A000203(n) - A146076(n). - Omar E. Pol, Apr 05 2016
a(2*n) = a(n). - Giuseppe Coppoletta, Nov 02 2016
From Wolfdieter Lang, Dec 11 2016: (Start)
G.f.: Sum_{n>=1} x^n*(1+x^(2*n))/(1-x^(2*n))^2, from the second to last equation of the proof to Theorem 382 (with x^2 -> x) of the Hardy-Wright reference, p. 312.
a(n) = Sum_{d|n} (-d)*(-1)^(n/d), commutating factors of the D.g.f. given above by Jovovic, Oct 11 2002. See also the a(n) version given by Jovovic, Sep 06 2002. (End)
a(n) = A000203(n)/A038712(n). - Omar E. Pol, Dec 14 2017
a(n) = A000203(n)/(2^(1 + (A183063(n)/A001227(n))) - 1). - Omar E. Pol, Nov 06 2018
a(n) = A000203(2n) - 2*A000203(n). - Ridouane Oudra, Aug 28 2019
From Peter Bala, Jan 04 2021: (Start)
a(n) = (2/3)*A002131(n) + (1/3)*A002129(n) = (2/3)*A002131(n) + (-1)^(n+1)*(1/3)*A113184(n).
a(n) = A002131(n) - (1/2)*A146076; a(n) = 2*A002131(n) - A000203(n). (End)
a(n) = A000203(A000265(n)) - John Keith, Aug 30 2021
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000203(k) = A065442 - 1 = 0.60669... . - Amiram Eldar, Dec 14 2024

A008438 Sum of divisors of 2*n + 1.

Original entry on oeis.org

1, 4, 6, 8, 13, 12, 14, 24, 18, 20, 32, 24, 31, 40, 30, 32, 48, 48, 38, 56, 42, 44, 78, 48, 57, 72, 54, 72, 80, 60, 62, 104, 84, 68, 96, 72, 74, 124, 96, 80, 121, 84, 108, 120, 90, 112, 128, 120, 98, 156, 102, 104, 192, 108, 110, 152, 114, 144, 182, 144, 133, 168
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of ways of writing n as the sum of 4 triangular numbers.
Bisection of A000203. - Omar E. Pol, Mar 14 2012
a(n) is also the total number of parts in all partitions of 2*n + 1 into equal parts. - Omar E. Pol, Feb 14 2021

Examples

			Divisors of 9 are 1,3,9, so a(4)=1+3+9=13.
F_2(z) = eta(4z)^8/eta(2z)^4 = q + 4q^3 + 6q^5 +8q^7 + 13q^9 + ...
G.f. = 1 + 4*x + 6*x^2 + 8*x^3 + 13*x^4 + 12*x^5 + 14*x^6 + 24*x^7 + 18*x^8 + 20*x^9 + ...
B(q) = q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + 12*q^11 + 14*q^13 + 24*q^15 + 18*q^17 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 139 Ex. (iii).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 19 eq. (6), and p. 283 eq. (8).
  • W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 12.
  • H. M. Farkas, I. Kra, Cosines and triangular numbers, Rev. Roumaine Math. Pures Appl., 46 (2001), 37-43.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.31).
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 184, Prop. 4, F(z).
  • G. Polya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ. Press, 1954, page 92 ff.

Crossrefs

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Programs

  • Haskell
    a008438 = a000203 . a005408  -- Reinhard Zumkeller, Sep 22 2014
    
  • Magma
    Basis( ModularForms( Gamma0(4), 2), 124) [2]; /* Michael Somos, Jun 12 2014 */
    
  • Magma
    [DivisorSigma(1, 2*n+1): n in [0..70]]; // Vincenzo Librandi, Aug 01 2017
  • Maple
    A008438 := proc(n) numtheory[sigma](2*n+1) ; end proc: # R. J. Mathar, Mar 23 2011
  • Mathematica
    DivisorSigma[1, 2 # + 1] & /@ Range[0, 61] (* Ant King, Dec 02 2010 *)
    a[ n_] := SeriesCoefficient[ D[ Series[ Log[ QPochhammer[ -x] / QPochhammer[ x]], {x, 0, 2 n + 1}], x], {x, 0 , 2n}]; (* Michael Somos, Oct 15 2019 *)
  • PARI
    {a(n) = if( n<0, 0, sigma( 2*n + 1))};
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n; polcoeff( sum( k=1, (sqrtint( 4*n + 1) + 1)\2, x^(k^2 - k), x * O(x^n))^4, n))}; /* Michael Somos, Sep 17 2004 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, n = 2*n; A = x * O(x^n); polcoeff( (eta(x^4 + A)^2 / eta(x^2 + A))^4, n))}; /* Michael Somos, Sep 17 2004 */
    
  • Sage
    ModularForms( Gamma0(4), 2, prec=124).1;  # Michael Somos, Jun 12 2014
    

Formula

Expansion of q^(-1/2) * (eta(q^2)^2 / eta(q))^4 = psi(q)^4 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Apr 11 2004
Expansion of Jacobi theta_2(q)^4 / (16*q) in powers of q^2. - Michael Somos, Apr 11 2004
Euler transform of period 2 sequence [4, -4, 4, -4, ...]. - Michael Somos, Apr 11 2004
a(n) = b(2*n + 1) where b() is multiplicative and b(2^e) = 0^n, b(p^e) =(p^(e+1) - 1) / (p - 1) if p>2. - Michael Somos, Jul 07 2004
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 8*w*v^2 + 16*w^2*v - u^2*w - Michael Somos, Apr 08 2005
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^3), B(q^9)) where f(u, v, w) = v^4 - 30*u*v^2*w + 12*u*v*w*(u + 9*w) - u*w*(u^2 + 9*w*u + 81*w^2).
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u2^3 + u1^2*u6 + 3*u2*u3^2 + 27*u6^3 - u1*u2*u3 - 3*u1*u3*u6 - 7*u2^2*u6 - 21*u2*u6^2. - Michael Somos, May 30 2005
G.f.: Sum_{k>=0} (2k + 1) * x^k / (1 - x^(2k + 1)).
G.f.: (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - Michael Somos, Apr 11 2004
G.f. Sum_{k>=0} a(k) * x^(2*k + 1) = x * (Product_{k>0} (1 - x^(4*k))^2 / (1 - x^(2*k)))^4 = x * (Sum_{k>0} x^(k^2 - k))^4 = Sum_{k>0} k * (x^k / (1 - x^k) - 3 * x^(2*k) / (1 - x^(2*k)) + 2 * x^(4*k) / (1 - x^(4*k))). - Michael Somos, Jul 07 2004
Number of solutions of 2*n + 1 = (x^2 + y^2 + z^2 + w^2) / 4 in positive odd integers. - Michael Somos, Apr 11 2004
8 * a(n) = A005879(n) = A000118(2*n + 1). 16 * a(n) = A129588(n). a(n) = A000593(2*n + 1) = A115607(2*n + 1).
a(n) = A000203(2*n+1). - Omar E. Pol, Mar 14 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1/4) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A096727. Michael Somos, Jun 12 2014
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 4*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017
From Peter Bala, Jan 10 2021: (Start)
a(n) = A002131(2*n+1).
G.f.: Sum_{n >= 0} x^n*(1 + x^(2*n+1))/(1 - x^(2*n+1))^2. (End)
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 8. - Vaclav Kotesovec, Aug 07 2022
Convolution of A125061 and A138741. - Michael Somos, Mar 04 2023

Extensions

Comments from Len Smiley, Enoch Haga

A006950 G.f.: Product_{k>=1} (1 + x^(2*k - 1)) / (1 - x^(2*k)).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 28, 35, 43, 55, 70, 86, 105, 130, 161, 196, 236, 287, 350, 420, 501, 602, 722, 858, 1016, 1206, 1431, 1687, 1981, 2331, 2741, 3206, 3740, 4368, 5096, 5922, 6868, 7967, 9233, 10670, 12306, 14193, 16357, 18803, 21581
Offset: 0

Views

Author

Keywords

Comments

Also the number of partitions of n in which all odd parts are distinct. There is no restriction on the even parts. E.g., a(9)=13 because "9 = 8+1 = 7+2 = 6+3 = 6+2+1 = 5+4 = 5+3+1 = 5+2+2 = 4+4+1 = 4+3+2 = 4+2+2+1 = 3+2+2+2 = 2+2+2+2+1". - Noureddine Chair, Feb 03 2005
Number of partitions of n in which each even part occurs with even multiplicity. There is no restriction on the odd parts.
Also the number of partitions of n into parts not congruent to 2 mod 4. - James Sellers, Feb 08 2002
Coincides with the sequence of numbers of nilpotent conjugacy classes in the Lie algebras o(n) of skew-symmetric n X n matrices, n=0,1,2,3,... (the cases n=0,1 being degenerate). This sequence, A015128 and A000041 together cover the nilpotent conjugacy classes in the classical A,B,C,D series of Lie algebras. - Alexander Elashvili, Sep 08 2003
Poincaré series [or Poincare series] (or Molien series) for symmetric invariants in F_2(b_1, b_2, ... b_n) ⊗ E(e_1, e_2, ... e_n) with b_i 2-dimensional, e_i one-dimensional and the permutation action of S_n, in the case n=2.
Equals polcoeff inverse of A010054 with alternate signs. - Gary W. Adamson, Mar 15 2010
It appears that this sequence is related to the generalized hexagonal numbers (A000217) in the same way as the partition numbers A000041 are related to the generalized pentagonal numbers A001318. (See the table in comments section of A195825.) Conjecture: this is 1 together with the row sums of triangle A195836, also column 1 of A195836, also column 2 of the square array A195825. - Omar E. Pol, Oct 09 2011
Since this is also column 2 of A195825 so the sequence contains only one plateau [1, 1, 1] of level 1 and length 3. For more information see A210843. - Omar E. Pol, Jun 27 2012
Convolution of A035363 and A000700. - Vaclav Kotesovec, Aug 17 2015
Also the number of ways to stack n triangles in a valley (pointing upwards or downwards depending on row parity). - Seiichi Manyama, Jul 07 2018

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 13*x^9 + ...
G.f. = q^-1 + q^7 + q^15 + 2*q^23 + 3*q^31 + 4*q^39 + 5*q^47 + 7*q^55 + 10*q^63 + ...
From _Seiichi Manyama_, Jul 07 2018: (Start)
n | the ways to stack n triangles in a valley
--+------------------------------------------------------
1 | *---*
  |  \ /
  |   *
  |
2 |   *
  |  / \
  | *---*
  |  \ /
  |   *
  |
3 |   *---*     *---*
  |  / \ /       \ / \
  | *---*         *---*
  |  \ /           \ /
  |   *             *
  |
4 |     *                       *
  |    / \                     / \
  |   *---*     *---*---*     *---*
  |  / \ /       \ / \ /       \ / \
  | *---*         *---*         *---*
  |  \ /           \ /           \ /
  |   *             *             *
  |
5 |     *---*         *         *         *---*
  |    / \ /         / \       / \         \ / \
  |   *---*     *---*---*     *---*---*     *---*
  |  / \ /       \ / \ /       \ / \ /       \ / \
  | *---*         *---*         *---*         *---*
  |  \ /           \ /           \ /           \ /
  |   *             *             *             *
  |
6 |       *
  |      / \
  |     *---*         *---*     *   *     *---*
  |    / \ /         / \ /     / \ / \     \ / \
  |   *---*     *---*---*     *---*---*     *---*---*
  |  / \ /       \ / \ /       \ / \ /       \ / \ /
  | *---*         *---*         *---*         *---*
  |  \ /           \ /           \ /           \ /
  |   *             *             *             *
  |   *
  |  / \
  | *---*
  |  \ / \
  |   *---*
  |    \ / \
  |     *---*
  |      \ /
  |       *
(End)
		

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 108.
  • M. D. Hirschhorn, The Power of q, Springer, 2017. See pod, page 297.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See also Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cf. A163203.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(i>n, 0, b(n-i, i-irem(i, 2)))))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 06 2013
  • Mathematica
    CoefficientList[ Series[ Product[(1 + x^(2k - 1))/(1 - x^(2k)), {k, 25}], {x, 0, 50}], x] (* Robert G. Wilson v, Jun 28 2012 *)
    CoefficientList[Series[x*QPochhammer[-1/x, x^2] / ((1+x)*QPochhammer[x^2, x^2]), {x, 0, 50}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
    CoefficientList[Series[2*(-x)^(1/8) / EllipticTheta[2, 0, Sqrt[-x]], {x, 0, 50}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-Mod[i, 2]]]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 11 2018, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, (-1)^(m-d)*d)*x^m/m)+x*O(x^n)), n)} \\ Paul D. Hanna, Jul 22 2009
    (GW-BASIC)
    ' A program with two A-numbers (Note that here A000217 are the generalized hexagonal numbers):
    10 Dim A000217(100), A057077(100), a(100): a(0)=1
    20 For n = 1 to 51: For j = 1 to n
    30 If A000217(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A000217(j))
    40 Next j: Print a(n-1);: Next n ' Omar E. Pol, Jun 10 2012

Formula

a(n) = (1/n)*Sum_{k=1..n} (-1)^(k+1)*A002129(k)*a(n-k), n > 1, a(0)=1. - Vladeta Jovovic, Feb 05 2002
G.f.: 1/Sum_{k>=0} (-x)^(k*(k+1)/2). - Vladeta Jovovic, Sep 22 2002 [corrected by Vaclav Kotesovec, Aug 17 2015]
a(n) = A059777(n-1)+A059777(n), n > 0. - Vladeta Jovovic, Sep 22 2002
G.f.: Product_{m>=1} (1+x^m)^(if A001511(m) > 1, A001511(m)-1 else A001511(m)). - Jon Perry, Apr 15 2005
Expansion of 1 / psi(-x) in powers of x where psi() is a Ramanujan theta function.
Expansion of q^(1/8) * eta(q^2) / (eta(q) * eta(q^4)) in powers of q.
Convolution inverse of A106459. - Michael Somos, Nov 02 2005
G.f.: exp( Sum_{n>=1} [Sum_{d|n} (-1)^(n-d)*d] * x^n/n ). - Paul D. Hanna, Jul 22 2009
a(n) ~ (8*n+1) * cosh(sqrt(8*n-1)*Pi/4) / (16*sqrt(2)*n^2) - sinh(sqrt(8*n-1)*Pi/4) / (2*Pi*n^(3/2)) ~ exp(Pi*sqrt(n/2))/(4*sqrt(2)*n) * (1 - (2/Pi + Pi/16)/sqrt(2*n) + (3/16 + Pi^2/1024)/n). - Vaclav Kotesovec, Aug 17 2015, extended Jan 09 2017
Can be computed recursively by Sum_{j>=0} (-1)^(ceiling(j/2)) a(n - j(j+1)/2) = 0, for n > 0. [Merca, Theorem 4.3] - Eric M. Schmidt, Sep 21 2017
a(n) = A000041(n) - A085642(n), for n >= 1. - Wouter Meeussen, Dec 20 2017

Extensions

G.f. and more terms from Vladeta Jovovic, Feb 05 2002
Showing 1-10 of 84 results. Next