cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002134 Generalized divisor function. Number of partitions of n with exactly three part sizes.

Original entry on oeis.org

1, 2, 5, 10, 15, 25, 37, 52, 67, 97, 117, 154, 184, 235, 277, 338, 385, 469, 531, 630, 698, 810, 910, 1038, 1144, 1295, 1425, 1577, 1741, 1938, 2089, 2301, 2505, 2700, 2970, 3189, 3444, 3703, 4004, 4242, 4617, 4882, 5244, 5558, 5999, 6221, 6755, 7050, 7576
Offset: 6

Views

Author

Keywords

Examples

			a(8) = 5 because we have 5+2+1, 4+3+1, 4+2+1+1, 3+2+2+1, 3+2+1+1+1.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060177.
Column k=3 of A116608. - Alois P. Heinz, Nov 07 2012

Programs

  • Maple
    # Using function P from A365676:
    A002134 := n -> P(n, 3, n): seq(A002134(n), n = 6..54); # Peter Luschny, Sep 15 2023
  • Mathematica
    nn=40;sss=Sum[Sum[Sum[x^(i+j+k)/(1-x^i)/(1-x^j)/(1-x^k),{k,1,j-1}], {j,1,i-1}], {i,1,nn}]; Drop[CoefficientList[Series[sss,{x,0,nn}],x],6]  (* Geoffrey Critzer, Sep 13 2012 *)

Formula

G.f.: Sum_{i>=1} Sum_{j=1..i-1} Sum_{k=1..j-1} x^(i+j+k)/((1-x^i)*(1-x^j)* (1-x^k)). - Geoffrey Critzer, Sep 13 2012

Extensions

Better description and more terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Nov 02 2003