A002137 Number of n X n symmetric matrices with nonnegative integer entries, trace 0 and all row sums 2.
1, 0, 1, 1, 6, 22, 130, 822, 6202, 52552, 499194, 5238370, 60222844, 752587764, 10157945044, 147267180508, 2282355168060, 37655004171808, 658906772228668, 12188911634495388, 237669544014377896, 4871976826254018760, 104742902332392298296
Offset: 0
Examples
a(2)=1 from 02 20 a(3)=1 from 011 101 011 s(4)=6 from 0200 0110 2000 1001 0002 1001 0020 0110 x3 x3
References
- N. J. Calkin, J. E. Janoski, matrices of row and column sum 2, Congr. Numerantium 192 (2008) 19-32
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.8.
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- A. C. Aitken, On the number of distinct terms in the expansion of symmetric and skew determinants, Edinburgh Math. Notes, No. 34 (1944), 1-5.
- A. C. Aitken, On the number of distinct terms in the expansion of symmetric and skew determinants, Edinburgh Math. Notes, No. 34 (1944), 1-5. [Annotated scanned copy]
- Jacob L. Bourjaily, Michael Plesser, and Cristian Vergu, The Many Colours of Amplitudes, arXiv:2412.21189 [hep-th], 2024. See pp. 17, 52.
- Mark Colarusso, William Q. Erickson, and Jeb F. Willenbring, Contingency tables and the generalized Littlewood-Richardson coefficients, arXiv:2012.06928 [math.RT], 2020.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019) - From _N. J. A. Sloane_, May 01 2012
- I. M. H. Etherington, Some problems of non-associative combinations, Edinburgh Math. Notes, 32 (1940), 1-6.
- Rui-Li Liu and Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
- P. A. MacMahon, Combinations derived from m identical sets of n different letters and their connexion with general magic squares, Proc. London Math. Soc., 17 (1917), 25-41.
- Victor S. Miller, The Cayley Menger Theorem and integer matrices with row sum 2 (on MathOverflow)
- T. Muir, The Theory of Determinants in the Historical Order of Development, 4 vols., Macmillan, NY, 1906-1923. [Annotated scans of selected pages] See Vol. 3, p. 122.
- Marko R. Riedel, Number of ways to derange n numbers ignoring direction, counted by Analytic Combinatorics (2024)
Programs
-
Mathematica
nxt[{n_,a_,b_,c_}]:={n+1,b,c,n(b+c)-n(n-1) a/2}; Drop[Transpose[ NestList[ nxt,{0,1,0,1},30]][[2]],2] (* Harvey P. Dale, Jun 12 2013 *)
-
PARI
x='x+O('x^66); Vec( serlaplace( (1-x)^(-1/2)*exp(-x/2+x^2/4) ) ) \\ Joerg Arndt, Apr 27 2013
Formula
E.g.f.: (1-x)^(-1/2)*exp(-x/2+x^2/4).
a(n) = (n-1)*(a(n-1)+a(n-2)) - (n-1)*(n-2)*a(n-3)/2.
a(n) ~ sqrt(2) * n^n / exp(n+1/4). - Vaclav Kotesovec, Feb 25 2014
Comments