cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A076329 Numbers k for which rank of the elliptic curve y^2=x^3+k*x is 2.

Original entry on oeis.org

14, 33, 34, 39, 46, 55, 63, 65, 66, 68, 73, 89, 94, 99, 105, 113, 114, 129, 138, 145, 150, 154, 155, 158, 178, 183, 185, 201, 203, 206, 209, 219, 224, 226, 233, 238, 254, 258, 260, 273, 274, 281, 289, 295, 299, 308, 310, 333, 334, 337, 345, 353, 354, 360, 385, 386, 388
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2002

Keywords

References

  • D. S. Jandu, Elliptic Curve, Infinite Bandwidth Publishing, N. Hollywood CA 2007.
  • D. S. Jandu, Birch And Swinnerton Dyer Conjecture, Infinite Bandwidth Publishing, N. Hollywood CA 2007.
  • D. Zagier & G. Harder, "La conjecture de Birch et Swinnerton-Dyer" in Les Dossiers de La Recherche, pp. 48-53 No. 20 August-October 2005 Paris.

Crossrefs

Programs

  • PARI
    for(k=1, 1e3, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==2, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019

Extensions

More terms added by Seiichi Manyama, Jul 07 2019

A002158 Numbers k for which the rank of the elliptic curve y^2 = x^3 + k*x is 0.

Original entry on oeis.org

1, 2, 4, 6, 7, 10, 11, 12, 16, 17, 22, 23, 25, 26, 27, 30, 32, 36, 38, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 62, 64, 70, 71, 72, 74, 75, 76, 78, 81, 82, 86, 87, 91, 96, 97, 102, 103, 106, 107, 108, 110, 112, 116, 117, 118, 119, 122, 123, 130, 132, 134, 135, 137, 139, 140, 142, 146, 147, 151, 160, 161, 162, 166, 167, 169, 170, 172, 174, 176, 177, 182, 186, 187, 190, 192, 193, 194, 199
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002159 (rank 1), A076329 (rank 2).
Cf. A060953.

Programs

  • Magma
    for k in[1..200] do if Rank(EllipticCurve([0,0,0,k,0])) eq 0 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019
    
  • PARI
    for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==0, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019

Extensions

Corrected and extended by Vaclav Kotesovec, Jul 07 2019
New name by Vaclav Kotesovec, Jul 07 2019

A309028 Smallest k>0 such that the elliptic curve y^2 = x^3 + k*x has rank n, if k exists.

Original entry on oeis.org

1, 3, 14, 323, 1918, 195843
Offset: 0

Views

Author

Seiichi Manyama, Jul 08 2019

Keywords

Comments

See A309029 for the smallest negative k.

Crossrefs

Extensions

a(5) from Vaclav Kotesovec, Jul 14 2019

A309030 Numbers k for which rank of the elliptic curve y^2=x^3+k*x is 3.

Original entry on oeis.org

323, 328, 399, 445, 579, 723, 904, 943, 1023, 1139, 1288, 1314, 1443, 1508, 1679, 1743, 1763, 1768, 1953, 2005, 2035, 2159, 2275, 2328, 2419, 2451, 2504, 2533, 2725, 2739, 2790, 2793, 2824, 2915, 2980, 3029, 3038, 3043, 3108, 3196, 3199, 3245, 3341, 3363, 3443, 3459, 3465
Offset: 1

Views

Author

Seiichi Manyama, Jul 08 2019

Keywords

Crossrefs

Cf. A002158 (rank 0), A002159 (rank 1), A076329 (rank 2), this sequence (rank 3), A309031 (rank 4).
Cf. A309033.

Programs

  • Magma
    for k in[1..4000] do if Rank(EllipticCurve([0,0,0,k,0])) eq 3 then print k; end if; end for; // Vaclav Kotesovec, Jul 08 2019
  • PARI
    for(k=1, 3e3, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==3, print1(k", ")))
    

A309031 Numbers k for which rank of the elliptic curve y^2=x^3+k*x is 4.

Original entry on oeis.org

1918, 5190, 6123, 6953, 9603, 10759, 12483, 13398, 14673, 14795, 15910, 15934, 16238, 17753, 18278, 18705, 18814, 20148, 20398, 20658, 23180, 23953, 24475, 25988, 26809, 28633, 29274, 30340, 30688, 31073, 31098, 31174, 32118, 33218, 33278, 34804, 36955, 37214, 37298
Offset: 1

Views

Author

Seiichi Manyama, Jul 08 2019

Keywords

Crossrefs

Cf. A002158 (rank 0), A002159 (rank 1), A076329 (rank 2), A309030 (rank 3), this sequence (rank 4).

Programs

  • Magma
    for k in[1..10000] do if Rank(EllipticCurve([0,0,0,k,0])) eq 4 then print k; end if; end for; // Vaclav Kotesovec, Jul 08 2019
  • PARI
    for(k=1, 1e4, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==4, print1(k", ")))
    

A309190 Numbers k for which rank of the elliptic curve y^2 = x^3 + k*x is 5.

Original entry on oeis.org

195843, 196168, 233864
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 16 2019

Keywords

Crossrefs

A076330 Elliptic curves (see reference for precise definition).

Original entry on oeis.org

17, 41, 57, 62, 82, 97, 117, 137, 142, 146, 161, 177, 193, 194, 392, 452, 792
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2002

Keywords

Crossrefs

Cf. A002150-A002159. Subsequence of A002158.

A076331 Elliptic curves (see reference for precise definition).

Original entry on oeis.org

136, 584, 712, 776
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2002

Keywords

Crossrefs

Cf. A002150-A002159. Subsequence of A002159.
Showing 1-8 of 8 results.