cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002159 Numbers k for which the rank of the elliptic curve y^2 = x^3 + k*x is 1.

Original entry on oeis.org

3, 5, 8, 9, 13, 15, 18, 19, 20, 21, 24, 28, 29, 31, 35, 37, 40, 47, 48, 49, 51, 53, 56, 60, 61, 67, 69, 77, 79, 80, 83, 84, 85, 88, 90, 92, 93, 95, 98, 100, 101, 104, 109, 111, 115, 120, 121, 124, 125, 126, 127, 128, 131, 133, 136, 141, 143, 144, 148, 149, 152, 153, 156
Offset: 1

Views

Author

Keywords

Comments

Terms 80 and 128 are missing in the article by Birch and Swinnerton-Dyer, page 25, table 4b. - Vaclav Kotesovec, Jul 07 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    for k in[1..200] do if Rank(EllipticCurve([0,0,0,k,0])) eq 1 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019
  • PARI
    for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==1, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019
    

Extensions

More terms added by Seiichi Manyama, Jul 07 2019

A002158 Numbers k for which the rank of the elliptic curve y^2 = x^3 + k*x is 0.

Original entry on oeis.org

1, 2, 4, 6, 7, 10, 11, 12, 16, 17, 22, 23, 25, 26, 27, 30, 32, 36, 38, 41, 42, 43, 44, 45, 50, 52, 54, 57, 58, 59, 62, 64, 70, 71, 72, 74, 75, 76, 78, 81, 82, 86, 87, 91, 96, 97, 102, 103, 106, 107, 108, 110, 112, 116, 117, 118, 119, 122, 123, 130, 132, 134, 135, 137, 139, 140, 142, 146, 147, 151, 160, 161, 162, 166, 167, 169, 170, 172, 174, 176, 177, 182, 186, 187, 190, 192, 193, 194, 199
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002159 (rank 1), A076329 (rank 2).
Cf. A060953.

Programs

  • Magma
    for k in[1..200] do if Rank(EllipticCurve([0,0,0,k,0])) eq 0 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019
    
  • PARI
    for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==0, print1(k", "))) \\ Seiichi Manyama, Jul 07 2019

Extensions

Corrected and extended by Vaclav Kotesovec, Jul 07 2019
New name by Vaclav Kotesovec, Jul 07 2019

A309032 Numbers k for which rank of the elliptic curve y^2=x^3-k*x is 2.

Original entry on oeis.org

17, 56, 65, 77, 90, 97, 117, 132, 136, 141, 145, 155, 156, 161, 184, 205, 207, 219, 220, 221, 241, 252, 257, 259, 260, 264, 272, 275, 285, 291, 292, 301, 305, 306, 337, 342, 355, 356, 371, 376, 395, 396, 401, 420, 429, 433, 445, 449, 452, 456, 465, 481, 497, 507, 516
Offset: 1

Views

Author

Seiichi Manyama, Jul 08 2019

Keywords

Crossrefs

Cf. A002156 (rank 0), A002157 (rank 1). this sequence (rank 2), A309033 (rank 3), A309034(rank 4).
Cf. A076329.

Programs

  • Magma
    for k in[1..1000] do if Rank(EllipticCurve([0,0,0,-k,0])) eq 2 then print k; end if; end for; // Vaclav Kotesovec, Jul 08 2019
  • PARI
    for(k=1, 1e3, if(ellanalyticrank(ellinit([0, 0, 0, -k, 0]))[1]==2, print1(k", ")))
    

A309028 Smallest k>0 such that the elliptic curve y^2 = x^3 + k*x has rank n, if k exists.

Original entry on oeis.org

1, 3, 14, 323, 1918, 195843
Offset: 0

Views

Author

Seiichi Manyama, Jul 08 2019

Keywords

Comments

See A309029 for the smallest negative k.

Crossrefs

Extensions

a(5) from Vaclav Kotesovec, Jul 14 2019

A309030 Numbers k for which rank of the elliptic curve y^2=x^3+k*x is 3.

Original entry on oeis.org

323, 328, 399, 445, 579, 723, 904, 943, 1023, 1139, 1288, 1314, 1443, 1508, 1679, 1743, 1763, 1768, 1953, 2005, 2035, 2159, 2275, 2328, 2419, 2451, 2504, 2533, 2725, 2739, 2790, 2793, 2824, 2915, 2980, 3029, 3038, 3043, 3108, 3196, 3199, 3245, 3341, 3363, 3443, 3459, 3465
Offset: 1

Views

Author

Seiichi Manyama, Jul 08 2019

Keywords

Crossrefs

Cf. A002158 (rank 0), A002159 (rank 1), A076329 (rank 2), this sequence (rank 3), A309031 (rank 4).
Cf. A309033.

Programs

  • Magma
    for k in[1..4000] do if Rank(EllipticCurve([0,0,0,k,0])) eq 3 then print k; end if; end for; // Vaclav Kotesovec, Jul 08 2019
  • PARI
    for(k=1, 3e3, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==3, print1(k", ")))
    

A309031 Numbers k for which rank of the elliptic curve y^2=x^3+k*x is 4.

Original entry on oeis.org

1918, 5190, 6123, 6953, 9603, 10759, 12483, 13398, 14673, 14795, 15910, 15934, 16238, 17753, 18278, 18705, 18814, 20148, 20398, 20658, 23180, 23953, 24475, 25988, 26809, 28633, 29274, 30340, 30688, 31073, 31098, 31174, 32118, 33218, 33278, 34804, 36955, 37214, 37298
Offset: 1

Views

Author

Seiichi Manyama, Jul 08 2019

Keywords

Crossrefs

Cf. A002158 (rank 0), A002159 (rank 1), A076329 (rank 2), A309030 (rank 3), this sequence (rank 4).

Programs

  • Magma
    for k in[1..10000] do if Rank(EllipticCurve([0,0,0,k,0])) eq 4 then print k; end if; end for; // Vaclav Kotesovec, Jul 08 2019
  • PARI
    for(k=1, 1e4, if(ellanalyticrank(ellinit([0, 0, 0, k, 0]))[1]==4, print1(k", ")))
    

A309190 Numbers k for which rank of the elliptic curve y^2 = x^3 + k*x is 5.

Original entry on oeis.org

195843, 196168, 233864
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 16 2019

Keywords

Crossrefs

A107484 Some numbers k such that the elliptic curve y^2 = x^3 + k*x has rank 2.

Original entry on oeis.org

14, 33, 34, 39, 46, -17, -56, -65, -77
Offset: 1

Views

Author

Sam Alexander, May 28 2005

Keywords

References

  • Dale Husemoller, "Elliptic Curves", Springer-Verlag: New York, 1987, p. 35.

Crossrefs

Cf. A002151.
This is the first few terms of A076329 followed by the first few negated terms of A309032.
Showing 1-8 of 8 results.