A002174 Values taken by reduced totient function psi(n).
1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 64, 66, 70, 72, 78, 80, 82, 84, 88, 90, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- D. H. Lehmer, Guide to Tables in the Theory of Numbers, Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
- Florian Luca and Carl Pomerance, On the range of Carmichael's universal-exponent function, Acta Arithmetica 162 (2014), pp.289-308.
- C. Moreau, Sur quelques théorèmes d'arithmétique, Nouvelles Annales de Mathématiques, 17 (1898), 293-307.
Programs
-
Mathematica
lst={}; Do[AppendTo[lst, CarmichaelLambda[n]], {n, 6*7!}]; lst; Take[Union[lst], 123] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *) (* warning: there seems to be no guarantee that no terms near the end are omitted! - Joerg Arndt, Dec 23 2014 *) TakeWhile[Union@ Table[CarmichaelLambda@ n, {n, 10^6}], # <= 168 &] (* Michael De Vlieger, Mar 19 2016 *)
-
PARI
list(lim)=my(v=List([1]),u,t); forprime(p=3,lim\3+1, u=List(); listput(u,p-1); while((t=u[#u]*p)<=lim, listput(u,t)); for(j=1,#v, for(i=1,#u, t=lcm(u[i],v[j]); if(t<=lim && t!=v[j], listput(v,t)))); v=List(Set(v))); forprime(p=lim\3+2,lim+1, listput(v,p-1)); v=List(Set(v)); for(i=1,#v, t=2*v[i]; if(t>lim, break); listput(v,t); while((t*=2)<=lim, listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jun 23 2017
-
PARI
is(n)=if(n%2, return(n==1)); my(f=factor(n),pe); for(i=1,#f~, if(n%(f[i,1]-1)==0, next); pe=f[i,1]^f[i,2]; forstep(q=2*pe+1,n+1,2*pe, if(n%(q-1)==0 && isprime(q), next(2))); return(0)); 1 \\ Charles R Greathouse IV, Jun 25 2017
Formula
n (log n)^0.086 << a(n) << n (log n)^0.36 where << is the Vinogradov symbol, see Luca & Pomerance. - Charles R Greathouse IV, Dec 28 2013
Extensions
More terms from T. D. Noe, Aug 13 2008
Comments