cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A143407 Largest number k such that the reduced totient function psi(k) = A002174(n).

Original entry on oeis.org

2, 24, 240, 504, 480, 264, 65520, 16320, 28728, 13200, 552, 131040, 6960, 171864, 32640, 138181680, 1082400, 151704, 5520, 1128, 4455360, 12720, 86184, 13920, 1416, 6814407600, 65280, 776664, 18744, 20174525280, 39816, 36801600, 1992
Offset: 1

Views

Author

T. D. Noe, Aug 13 2008

Keywords

Comments

For each of the values in A002174, there are only a finite number of numbers k such that psi(k)=A002174(n). This sequence gives the largest such k. Sequence A002396 gives the least k. The number of such k is given in A143408. When A002174(n) is twice a Sophie Germain prime, then a(n) is particularly small.

Crossrefs

Cf. A002322 (reduced totient function), A002174, A002396, A143408.

Formula

a(n) = A006863(A002174(n)/2) for n>1.

A143408 Number of numbers k such that the reduced totient function psi(k) = A002174(n).

Original entry on oeis.org

2, 6, 12, 16, 4, 8, 84, 32, 40, 32, 8, 20, 20, 64, 8, 480, 80, 48, 12, 8, 160, 20, 16, 4, 8, 1216, 8, 64, 16, 872, 24, 160, 8, 532, 52, 120, 12, 424, 100, 24, 4, 8, 944, 24, 144, 12, 1912, 272, 8, 16, 276, 24, 64, 144, 1856, 20, 96, 1276, 40, 112, 12, 8, 116, 20, 16, 96, 8
Offset: 1

Views

Author

T. D. Noe, Aug 13 2008

Keywords

Comments

a(n) is the number of divisors of A143407(n) that are not divisors of A143407(r) for r

Examples

			Because A002174(5)=8 and psi(k)=8 for k=32,96,160,480, we have a(5)=4.
		

Crossrefs

Cf. A002322 (reduced totient function), A079612.

Programs

  • PARI
    a079612(n) = {if (n%2, 2, res = 1; forprime(p=2, n+1, if (!(n % (p-1)), t = valuation(n, p); if (p==2, if (t, res *= p^(t+2)), res *= p^(t+1)););); res;);}
    nb(n) = sumdiv(n, d, moebius(n/d)*numdiv(a079612(d)));
    lista(nn) = for (n=1, nn, if (nbs = nb(n), print1(nbs, ", "))); \\ Michel Marcus, May 12 2018

A143417 Irregular triangle in which row n gives the k such that the reduced totient function psi(k) = A002174(n).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 24, 5, 10, 15, 16, 20, 30, 40, 48, 60, 80, 120, 240, 7, 9, 14, 18, 21, 28, 36, 42, 56, 63, 72, 84, 126, 168, 252, 504, 32, 96, 160, 480, 11, 22, 33, 44, 66, 88, 132, 264, 13, 26, 35, 39, 45, 52, 65, 70, 78, 90, 91, 104, 105, 112, 117, 130, 140, 144, 156
Offset: 1

Author

T. D. Noe, Aug 13 2008

Keywords

Comments

Row n consists of the divisors of A143407(n) that are not divisors of A143407(r) for rA143408(n).

Examples

			1,2; 3,4,6,8,12,24; 5,10,15,16,20,30,40,48,60,80,120,240
		

Crossrefs

Cf. A002322 (reduced totient function).

A270265 Numbers that are values of the totient function (A002202) but not of the reduced totient function (A002174).

Original entry on oeis.org

1936, 3872, 6348, 7744, 9196, 15004, 15488, 18392, 20812, 21160, 22264, 30008, 35332, 36784, 38416, 41624, 42320, 44528, 51304, 58564, 63916, 65596, 70664, 73084, 73568, 76832, 79420, 81796, 82668, 83248, 84100, 84640, 86152, 96040, 102124, 102608, 109384, 110836
Offset: 1

Author

Michel Marcus, Mar 14 2016

Keywords

Crossrefs

Programs

  • PARI
    isA002174(n) = if(n%2, return(n==1)); my(f=factor(n), pe); for(i=1, #f~, if(n%(f[i, 1]-1)==0, next); pe=f[i, 1]^f[i, 2]; forstep(q=2*pe+1, n+1, 2*pe, if(n%(q-1)==0 && isprime(q), next(2))); return(0)); 1 \\ Charles R Greathouse IV at A002174
    is(n) = istotient(n) && !isA002174(n); \\ Amiram Eldar, Nov 30 2024

Extensions

More terms from Jinyuan Wang, Feb 13 2020

A270266 Numbers that are values of the reduced totient function (A002174) but not of the totient function (A002202).

Original entry on oeis.org

90, 174, 230, 234, 246, 290, 308, 318, 364, 390, 410, 414, 450, 510, 516, 530, 534, 572, 594, 638, 644, 666, 678, 680, 702, 714, 728, 740, 770, 804, 830, 846, 870, 890, 902, 948, 954, 1026, 1036, 1074, 1098, 1100, 1110, 1130, 1134, 1146, 1148, 1164, 1166, 1190, 1204
Offset: 1

Author

Michel Marcus, Mar 14 2016

Keywords

Crossrefs

Programs

  • PARI
    isA002174(n) = if(n%2, return(n==1)); my(f=factor(n), pe); for(i=1, #f~, if(n%(f[i, 1]-1)==0, next); pe=f[i, 1]^f[i, 2]; forstep(q=2*pe+1, n+1, 2*pe, if(n%(q-1)==0 && isprime(q), next(2))); return(0)); 1 \\ Charles R Greathouse IV at A002174
    is(n) = !istotient(n) && isA002174(n); \\ Amiram Eldar, Dec 01 2024

A002322 Reduced totient function psi(n): least k such that x^k == 1 (mod n) for all x prime to n; also known as the Carmichael lambda function (exponent of unit group mod n); also called the universal exponent of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4, 4, 16, 6, 18, 4, 6, 10, 22, 2, 20, 12, 18, 6, 28, 4, 30, 8, 10, 16, 12, 6, 36, 18, 12, 4, 40, 6, 42, 10, 12, 22, 46, 4, 42, 20, 16, 12, 52, 18, 20, 6, 18, 28, 58, 4, 60, 30, 6, 16, 12, 10, 66, 16, 22, 12, 70, 6, 72, 36, 20, 18, 30, 12, 78, 4, 54
Offset: 1

Keywords

Comments

a(n) is the largest order of any element in the multiplicative group modulo n. - Joerg Arndt, Mar 19 2016
Largest period of repeating digits of 1/n written in different bases (i.e., largest value in each row of square array A066799 and least common multiple of each row). - Henry Bottomley, Dec 20 2001

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 53.
  • Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 269.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002322 n = foldl lcm 1 $ map (a207193 . a095874) $
                              zipWith (^) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Feb 16 2012
    
  • Magma
    [1] cat [ CarmichaelLambda(n) : n in [2..100]];
    
  • Maple
    with(numtheory); A002322 := lambda; [seq(lambda(n), n=1..100)];
  • Mathematica
    Table[CarmichaelLambda[k], {k, 50}] (* Artur Jasinski, Apr 05 2008 *)
  • PARI
    A002322(n)= lcm( apply( f -> (f[1]-1)*f[1]^(f[2]-1-(f[1]==2 && f[2]>2)), Vec(factor(n)~))) \\ M. F. Hasler, Jul 05 2009
    
  • PARI
    a(n)=lcm(znstar(n)[2]) \\ Charles R Greathouse IV, Aug 04 2012
    
  • Python
    from sympy import reduced_totient
    def A002322(n): return reduced_totient(n) # Chai Wah Wu, Feb 24 2021

Formula

If M = 2^e*P1^e1*P2^e2*...*Pk^ek, lambda(2^e) = 2^(e-1) if e=1 or 2, = 2^(e-2) if e > 2; lambda(M) = lcm(lambda(2^e), (P1-1)*P1^(e1-1), (P2-1)*P2^(e2-1), ..., (Pk-1)*Pk^(ek-1)).
a(n) = lcm_{k=1..A001221(n)} A207193(A095874(A027748(n,k)^A124010(n,k))). - Reinhard Zumkeller, Feb 16 2012

A049225 Values of totient function applied to squarefree numbers; or numbers of form Product (p_i-1) where p_i are distinct primes.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 56, 58, 60, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 112, 116, 120, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168, 172, 176
Offset: 1

Author

Keywords

Comments

Numbers m such that m = phi(k) and |mu(k)| = 1.

Examples

			8, 120, 48 are terms as totients of the squarefree numbers 15, 143, 210.
54, 110 are not terms since there are no squarefree numbers k such that phi(k) = 54, 110.
		

Crossrefs

Terms of A049200 after ordering and omitting multiple occurrences.

Programs

  • PARI
    isok(n) = {my(v = invphi(n)); (#v) && (#select(x->issquarefree(x), v));} \\ Michel Marcus, Feb 25 2019

A340521 List of possible orders of automorphism groups of finite groups.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60
Offset: 1

Author

Des MacHale, Feb 05 2021

Keywords

Comments

The terms shown here match the initial terms of all of A002174, A002202, A049225, but this is a strictly different sequence since it is known that it contains 3^7 = 2187 (which is the smallest odd term greater than 1), whereas for the other three sequences all terms greater than 1 are even.
This is a supersequence of A002202 since |Aut(Z/nZ)| = phi(n). - Jianing Song, Feb 05 2021
John Bray has produced a group G of order 3^2*19 = 171 such that |Aut G| = 1026 = 2.3^3.19. So 1026 is in the present sequence but is not in A002202. So the present sequence contains both odd and even terms not in A002202. - Des MacHale, Feb 10 2021
For more about this problem, see the references in A137315.

Crossrefs

A362401 Numbers in the range of A162296, where A162296(n) is the sum of divisors of n that have a square factor larger than 1.

Original entry on oeis.org

0, 4, 9, 12, 16, 24, 25, 27, 28, 32, 36, 48, 49, 54, 56, 60, 72, 75, 79, 80, 96, 100, 108, 112, 117, 120, 121, 124, 126, 128, 144, 147, 150, 152, 162, 168, 169, 176, 180, 183, 192, 196, 199, 200, 216, 224, 240, 248, 252, 268, 270, 272, 288, 289, 294, 296, 300
Offset: 1

Author

Amiram Eldar, Apr 18 2023

Keywords

Comments

Possible values of A162296 in increasing order.

Examples

			0 is a term since A162296(k) = 0 if k is squarefree (A005117).
		

Crossrefs

Similar sequences: A078923, A002191, A002202, A002174, A274790.

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1)]; s[1] = 0; m = 300; Select[Union[Array[s, m]], # <= m &]
  • PARI
    s(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((p^(e + 1) - 1)/(p - 1))) -  prod(i = 1, #f~, f[i, 1] + 1);}
    lista(kmax) = select(x -> (x < kmax), Set(vector(kmax, k, s(k))))

A270562 a(n) is the largest number m satisfying lambda(m)=n, or zero if there is no solution, where lambda(m) is Carmichael's lambda function A002322(m).

Original entry on oeis.org

2, 24, 0, 240, 0, 504, 0, 480, 0, 264, 0, 65520, 0, 0, 0, 16320, 0, 28728, 0, 13200, 0, 552, 0, 131040, 0, 0, 0, 6960, 0, 171864, 0, 32640, 0, 0, 0, 138181680, 0, 0, 0, 1082400, 0, 151704, 0, 5520, 0, 1128, 0, 4455360, 0, 0, 0, 12720, 0, 86184, 0, 13920, 0, 1416, 0, 6814407600, 0, 0, 0, 65280
Offset: 1

Author

Joerg Arndt, Mar 19 2016

Keywords

Comments

a(n) is the largest modulus m such that the largest order of any element in the multiplicative group modulo m is n; a(n) is zero if there is no such group with largest order n.
Omitting the zeros gives A143407.
a(n) = 0 if n is not a term of A002174.

Crossrefs

See also A321713 (number of solutions).

Programs

  • Mathematica
    a[n_] := Module[{f, fsz, g = 1, h = 1, p, e}, Which[n <= 0, Return[0], n == 1, Return[2], OddQ[n], Return[0]]; f = FactorInteger[n][[All, 1]]; fsz = Length[f]; For[k = 1, k <= fsz, k++, p = f[[k]]; e = 1; While[Mod[n, CarmichaelLambda[p^e]] == 0, e++]; g *= p^(e-1)]; Do[If[PrimeQ[d+1] && Mod[g, d+1] != 0, h *= (d+1)], {d, Divisors[n]}]; g *= h; If[CarmichaelLambda[g] != n, 0, g]];
    a /@ Range[100] (* Jean-François Alcover, Oct 18 2019, after Gheorghe Coserea *)
  • PARI
    lambda(n) = { \\ A002322
    my(f=factor(n), fsz=matsize(f)[1]);
    lcm(vector(fsz, k, my(p=f[k,1], e=f[k,2]);
    if (p != 2, p^(e-1)*(p-1), e > 2, 2^(e-2), 2^(e-1))));
    };
    a(n) = {
    if (n <= 0, return(0), n==1, return(2), n%2, return(0));
    my(f=factor(n), fsz=matsize(f)[1], g=1, h=1);
    for (k=1, fsz, my(p=f[k,1], e=1);
    while (n % lambda(p^e) == 0, e++); g *= p^(e-1));
    fordiv(n, d, if (isprime(d+1) && g % (d+1) != 0, h *= (d+1)));
    g *= h; if (lambda(g) != n, 0, g);
    };
    vector(64, n, a(n)) \\ Gheorghe Coserea, Feb 21 2019

Extensions

Corrected and extended by Gheorghe Coserea, Feb 21 2019
Entry revised by N. J. A. Sloane, May 03 2019
Showing 1-10 of 15 results. Next