A124240 Numbers n such that lambda(n) divides n, where lambda is Carmichael's function (A002322).
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 42, 48, 54, 60, 64, 72, 80, 84, 96, 100, 108, 120, 126, 128, 144, 156, 160, 162, 168, 180, 192, 200, 216, 220, 240, 252, 256, 272, 288, 294, 300, 312, 320, 324, 336, 342, 360, 378, 384, 400, 420, 432, 440, 468, 480
Offset: 1
Keywords
Examples
a(1) = 1 because 1 divides A124239(1) = 1. a(2) = 2 because 2 divides A124239(2) = 14. a(3) = 4 because 4 divides A124239(4) = 3704, but 3 does not divide A124239(3) = 197.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Alexander Kalmynin, On Novák numbers, arXiv:1611.00417 [math.NT], 2016. See Theorem 6 p. 11 where these numbers are called Novák-Carmichael numbers.
- Eric Weisstein's World of Mathematics, Carmichael Function
Programs
-
Haskell
a124240 n = a124240_list !! (n-1) a124240_list = filter (\x -> all (== 0) $ map ((mod x) . pred) $ a027748_row x) [1..] -- Reinhard Zumkeller, Aug 27 2013
-
Maple
a:= proc(n) option remember; local k; for k from `if`(n=1, 0, a(n-1))+1 while irem(k, numtheory[lambda](k))>0 do od: k end: seq(a(n), n=1..100); # Alois P. Heinz, Jul 04 2021 # Using function 'Clausen' from A160014: aList := m -> select(k -> irem(Clausen(k, 1), Clausen(k, 0)) = 0, [seq(1..m)]): aList(480); # Peter Luschny, Jun 08 2023
-
Mathematica
Do[f=n + Sum[ (2k-1)((2k-1)^n-1) / (2(k-1)), {k,2,n} ]; If[IntegerQ[f/n],Print[n]],{n,1,900}] Flatten[Position[Table[n/CarmichaelLambda[n], {n, 440}], Integer]] (* _T. D. Noe, Sep 11 2008 *)
-
PARI
is(n)=n%lcm(znstar(n)[2])==0 \\ Charles R Greathouse IV, Feb 11 2015
-
Python
from itertools import islice, count from sympy.ntheory.factor_ import reduced_totient def A124240gen(): return filter(lambda n:n % reduced_totient(n) == 0,count(1)) A124240_list = list(islice(A124240gen(),20)) # Chai Wah Wu, Dec 11 2021
Formula
k is in a <=> Clausen(k, 0) divides Clausen(k, 1), (Clausen = A160014). - Peter Luschny, Jun 08 2023
Extensions
New definition from T. D. Noe, Aug 31 2008
Edited by Max Alekseyev, Aug 25 2013
Comments