cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A322023 Lexicographically earliest such sequence a that a(i) = a(j) => A081373(i) = A081373(j) and A303756(i) = A303756(j), for all i, j. Here A081373 and A303756 are the ordinal transforms of Euler phi and Carmichael lambda.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 3, 7, 4, 1, 8, 1, 9, 10, 2, 1, 11, 1, 5, 2, 11, 1, 12, 1, 13, 14, 5, 7, 15, 1, 3, 4, 16, 1, 17, 1, 18, 9, 2, 1, 19, 2, 20, 7, 11, 1, 8, 14, 21, 10, 2, 1, 22, 1, 2, 23, 4, 24, 25, 1, 9, 7, 17, 1, 26, 1, 20, 18, 12, 14, 27, 1, 28, 1, 20, 1, 29, 30, 3, 7, 12, 1, 31, 32, 4, 18, 2, 3, 33, 1, 8, 6, 34, 1, 35, 1, 36, 37
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2018

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A081373(n), A303756(n)].

Crossrefs

Cf. A000010, A002322, A081373, A303756, A319339, A322024, A322025 (ordinal transform).

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A002322(n) = lcm(znstar(n)[2]); \\ From A002322
    v081373 = ordinal_transform(vector(up_to,n,eulerphi(n)));
    A081373(n) = v081373[n];
    v303756 = ordinal_transform(vector(up_to,n,A002322(n)));
    A303756(n) = v303756[n];
    v322023 = rgs_transform(vector(up_to, n, [A081373(n), A303756(n)]));
    A322023(n) = v322023[n];

A081373 Number of values of k, 1 <= k <= n, with phi(k) = phi(n), where phi is Euler totient function, A000010.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 1, 2, 1, 4, 1, 3, 2, 2, 1, 4, 1, 3, 2, 4, 1, 5, 1, 2, 2, 3, 1, 5, 1, 3, 2, 4, 1, 6, 1, 3, 3, 2, 1, 5, 2, 4, 1, 4, 1, 4, 2, 5, 2, 2, 1, 6, 1, 2, 3, 2, 1, 5, 1, 3, 1, 6, 1, 7, 1, 4, 3, 5, 2, 8, 1, 4, 1, 4, 1, 9, 1, 3, 1, 5, 1, 10, 2, 2, 3, 2, 3, 5, 1, 4, 4, 6
Offset: 1

Views

Author

Labos Elemer, Mar 24 2003

Keywords

Comments

Ordinal transform of Euler totient function phi, A000010. - Antti Karttunen, Aug 26 2024

Examples

			For n = 16: phi(k) = {1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8} for k = 1,...,n; 2 numbers exist with phi(k) = phi(n) = 8: {15,16}, so a(16) = 2.
If n = p is an odd prime number, then a(p) = 1 with phi(k) = p-1.
		

Crossrefs

Cf. A000010, A081375 (positions of records), A210719 (of 1's).
Cf. also A067004, A303756, A303757, A303777 (ordinal transform of this sequence).

Programs

  • Mathematica
    f[x_] := Count[Table[EulerPhi[j]-EulerPhi[x], {j, 1, x}], 0] Table[f[w], {w, 1, 100}]
  • PARI
    a(n)=my(t=eulerphi(n), s); sum(k=1, n, eulerphi(k)==t) \\ Charles R Greathouse IV, Feb 21 2013, corrected by Antti Karttunen, Aug 26 2024
    
  • PARI
    a(n) = #select(x -> x <= n, invphi(eulerphi(n))); \\ Amiram Eldar, Nov 08 2024, using Max Alekseyev's invphi.gp

A322871 Ordinal transform of A060681, where A060681(n) = n - A032742(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    A060681[n_] := n - n/FactorInteger[n][[1, 1]];
    b[_] = 1;
    a[n_] := a[n] = With[{t = A060681[n]}, b[t]++];
    a /@ Range[1, 105] (* Jean-François Alcover, Dec 19 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A060681(n) = if(1==n,0,(n-(n/vecmin(factor(n)[, 1]))));
    v322871 = ordinal_transform(vector(up_to,n,A060681(n)));
    A322871(n) = v322871[n];

A322873 Ordinal transform of A300721, which is Möbius transform of A060681.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 3, 1, 4, 3, 4, 1, 4, 1, 5, 2, 5, 1, 6, 2, 6, 2, 3, 1, 7, 1, 1, 2, 7, 2, 4, 1, 8, 3, 2, 1, 5, 1, 3, 3, 9, 1, 3, 2, 8, 4, 4, 1, 6, 2, 5, 3, 10, 1, 4, 1, 11, 1, 5, 3, 4, 1, 6, 2, 7, 1, 6, 1, 12, 2, 4, 1, 7, 1, 7, 4, 13, 1, 8, 1, 14, 2, 1, 1, 5, 2, 3, 3, 15, 1, 8, 1, 8, 2, 2, 1, 9, 1, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    A060681[n_] := n - n/FactorInteger[n][[1, 1]];
    A300721[n_] := Sum[MoebiusMu[n/d] A060681[d], {d, Divisors[n]}];
    b[_] = 1;
    a[n_] := a[n] = With[{t = A300721[n]}, b[t]++];
    a /@ Range[1, 105] (* Jean-François Alcover, Dec 19 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A060681(n) = if(1==n,0,(n-(n/vecmin(factor(n)[, 1]))));
    A300721(n) = sumdiv(n, d, moebius(n/d)*A060681(d));
    v322873 = ordinal_transform(vector(up_to,n,A300721(n)));
    A322873(n) = v322873[n];

A330747 Number of values of k, 1 <= k <= n, with A049559(k) = A049559(n), where A049559(n) = gcd(n - 1, phi(n)).

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 1, 7, 1, 8, 3, 9, 1, 10, 1, 11, 2, 12, 1, 13, 3, 14, 4, 1, 1, 15, 1, 16, 4, 17, 5, 18, 1, 19, 6, 20, 1, 21, 1, 22, 5, 23, 1, 24, 2, 25, 7, 2, 1, 26, 8, 27, 6, 28, 1, 29, 1, 30, 9, 31, 2, 1, 1, 32, 7, 3, 1, 33, 1, 34, 10, 4, 8, 35, 1, 36, 11, 37, 1, 38, 9, 39, 12, 40, 1, 41, 2, 42, 10, 43, 13
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2019

Keywords

Comments

Ordinal transform of A049559.

Crossrefs

Programs

  • Mathematica
    b[_] = 0;
    a[n_] := With[{t = GCD[n-1, EulerPhi[n]]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 27 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A049559(n) = gcd(n-1, eulerphi(n));
    v330747 = ordinal_transform(vector(up_to, n, A049559(n)));
    A330747(n) = v330747[n];

A303755 Ordinal transform of A289625.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 3, 1, 2, 1, 1, 1, 2, 2, 2, 1, 4, 1, 1, 1, 2, 1, 3, 1, 3, 2, 1, 1, 4, 1, 2, 3, 2, 1, 2, 2, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 3, 1, 5, 1, 2, 1, 2, 2, 2, 1, 6, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 7, 1, 2, 2, 2, 1, 1, 1, 4, 3, 3, 1, 4, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 30 2018

Keywords

Comments

Equally, ordinal transform of A289626.

Crossrefs

Cf. also A081373, A303756.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A289625(n) = { my(m=1,p=2,v=znstar(n)[2]); for(i=1,length(v),m *= p^v[i]; p = nextprime(p+1)); (m); };
    v303755 = ordinal_transform(vector(up_to,n,A289625(n)));
    A303755(n) = v303755[n];

A303758 a(1) = 1 and for n > 1, a(n) = number of values of k, 2 <= k <= n, with A002322(k) = A002322(n), where A002322 is Carmichael lambda.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 2, 1, 5, 1, 3, 3, 4, 1, 4, 1, 5, 5, 2, 1, 6, 1, 2, 2, 6, 1, 6, 1, 1, 3, 2, 3, 7, 1, 3, 4, 7, 1, 8, 1, 4, 5, 2, 1, 8, 2, 2, 3, 6, 1, 4, 3, 9, 5, 2, 1, 9, 1, 2, 10, 4, 7, 5, 1, 5, 3, 8, 1, 11, 1, 2, 4, 6, 3, 9, 1, 10, 1, 2, 1, 12, 6, 3, 3, 6, 1, 10, 11, 4, 4, 2, 3, 2, 1, 4, 5, 5, 1, 7, 1, 12, 13
Offset: 1

Views

Author

Antti Karttunen, Apr 30 2018

Keywords

Comments

Ordinal transform of f, where f(1) = 0 and f(n) = A002322(n) for n > 1.

Crossrefs

Cf. A002322.
Cf. also A303756, A303757.

Programs

  • Mathematica
    a[1] = 1; a[n_] := With[{c = CarmichaelLambda[n]}, Select[Range[2, n], c == CarmichaelLambda[#]&] // Length];
    Array[a, 1000] (* Jean-François Alcover, Sep 19 2020 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A002322(n) = lcm(znstar(n)[2]); \\ From A002322
    Aux303758(n) = if(1==n,0,A002322(n));
    v303758 = ordinal_transform(vector(up_to,n,Aux303758(n)));
    A303758(n) = v303758[n];

Formula

Except for a(2) = 1, a(n) = A303756(n).

A322874 Ordinal transform of A007431, which is Möbius transform of Euler phi.

Original entry on oeis.org

1, 1, 2, 3, 1, 2, 1, 1, 1, 3, 1, 4, 1, 4, 2, 2, 1, 5, 1, 3, 2, 6, 1, 2, 1, 7, 1, 3, 1, 8, 1, 1, 2, 9, 2, 3, 1, 10, 2, 1, 1, 11, 1, 3, 2, 12, 1, 4, 1, 13, 3, 3, 1, 14, 2, 1, 2, 15, 1, 4, 1, 16, 1, 2, 1, 17, 1, 4, 2, 18, 1, 2, 1, 19, 3, 3, 2, 20, 1, 3, 2, 21, 1, 4, 3, 22, 3, 1, 1, 23, 1, 3, 2, 24, 2, 3, 1, 25, 3, 4, 1, 26, 1, 1, 5
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    A007431[n_] := Sum[EulerPhi[d] MoebiusMu[n/d], {d, Divisors[n]}];
    b[_] = 0;
    a[n_] := a[n] = With[{t = A007431[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A007431(n) = sumdiv(n,d,moebius(n/d)*eulerphi(d));
    v322874 = ordinal_transform(vector(up_to,n,A007431(n)));
    A322874(n) = v322874[n];

A322025 Ordinal transform of A322023.

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 4, 1, 3, 1, 5, 1, 6, 2, 1, 2, 7, 1, 8, 1, 1, 4, 9, 1, 10, 2, 5, 2, 11, 1, 12, 1, 1, 3, 2, 1, 13, 3, 3, 1, 14, 1, 15, 1, 2, 6, 16, 1, 7, 1, 3, 3, 17, 2, 2, 1, 2, 8, 18, 1, 19, 9, 1, 4, 1, 1, 20, 3, 4, 2, 21, 1, 22, 2, 2, 2, 3, 1, 23, 1, 24, 3, 25, 1, 1, 4, 5, 3, 26, 1, 1, 5, 3, 10, 5, 1, 27, 3, 2, 1, 28, 1, 29, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2018

Keywords

Comments

Positions where 1, 2, 3, 4, 5, ... occur for the first time are 1, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 187, 191, 193, ... Note that this is not a subsequence of A000961; for example, 187 = 11*17 is a semiprime.

Crossrefs

Programs

  • PARI
    \\ Needs also code from A322023.
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v322025 = ordinal_transform(v322023);
    A322025(n) = v322025[n];

A322872 Ordinal transform of A171462, where A171462(n) = n - A052126(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 2, 3, 3, 1, 4, 1, 2, 2, 1, 1, 3, 2, 1, 3, 2, 1, 3, 1, 4, 2, 1, 3, 4, 1, 2, 3, 2, 1, 4, 1, 2, 5, 1, 1, 3, 2, 3, 1, 2, 1, 6, 1, 3, 1, 1, 1, 4, 1, 2, 2, 4, 3, 4, 1, 1, 2, 5, 1, 5, 1, 2, 6, 3, 2, 4, 1, 2, 3, 1, 1, 5, 2, 1, 2, 3, 1, 6, 3, 2, 1, 1, 2, 3, 1, 4, 3, 4, 1, 2, 1, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    A171462[n_] := If[n == 1, 0, Module[{f = FactorInteger[n], p},
         p = f[[-1, 1]]; n(p-1)/p]];
    b[_] = 0;
    a[n_] := a[n] = With[{t = A171462[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 21 2021 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A171462(n) = if(1==n,0,(n-(n/vecmax(factor(n)[, 1]))));
    v322872 = ordinal_transform(vector(up_to,n,A171462(n)));
    A322872(n) = v322872[n];
Showing 1-10 of 12 results. Next