cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303756 Number of values of k, 1 <= k <= n, with A002322(k) = A002322(n), where A002322 is Carmichael lambda.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 4, 2, 2, 1, 5, 1, 3, 3, 4, 1, 4, 1, 5, 5, 2, 1, 6, 1, 2, 2, 6, 1, 6, 1, 1, 3, 2, 3, 7, 1, 3, 4, 7, 1, 8, 1, 4, 5, 2, 1, 8, 2, 2, 3, 6, 1, 4, 3, 9, 5, 2, 1, 9, 1, 2, 10, 4, 7, 5, 1, 5, 3, 8, 1, 11, 1, 2, 4, 6, 3, 9, 1, 10, 1, 2, 1, 12, 6, 3, 3, 6, 1, 10, 11, 4, 4, 2, 3, 2, 1, 4, 5, 5, 1, 7, 1, 12, 13
Offset: 1

Views

Author

Antti Karttunen, Apr 30 2018

Keywords

Comments

Ordinal transform of A002322.

Crossrefs

Cf. A002322.
Cf. also A081373, A303755, A303758.

Programs

  • Mathematica
    a[n_] := With[{c = CarmichaelLambda[n]}, Select[Range[n], c == CarmichaelLambda[#]&] // Length];
    Array[a, 1000] (* Jean-François Alcover, Sep 19 2020 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A002322(n) = lcm(znstar(n)[2]); \\ From A002322
    v303756 = ordinal_transform(vector(up_to,n,A002322(n)));
    A303756(n) = v303756[n];

Formula

Except for a(2) = 2, a(n) = A303758(n).

A322025 Ordinal transform of A322023.

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 4, 1, 3, 1, 5, 1, 6, 2, 1, 2, 7, 1, 8, 1, 1, 4, 9, 1, 10, 2, 5, 2, 11, 1, 12, 1, 1, 3, 2, 1, 13, 3, 3, 1, 14, 1, 15, 1, 2, 6, 16, 1, 7, 1, 3, 3, 17, 2, 2, 1, 2, 8, 18, 1, 19, 9, 1, 4, 1, 1, 20, 3, 4, 2, 21, 1, 22, 2, 2, 2, 3, 1, 23, 1, 24, 3, 25, 1, 1, 4, 5, 3, 26, 1, 1, 5, 3, 10, 5, 1, 27, 3, 2, 1, 28, 1, 29, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 01 2018

Keywords

Comments

Positions where 1, 2, 3, 4, 5, ... occur for the first time are 1, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 187, 191, 193, ... Note that this is not a subsequence of A000961; for example, 187 = 11*17 is a semiprime.

Crossrefs

Programs

  • PARI
    \\ Needs also code from A322023.
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    v322025 = ordinal_transform(v322023);
    A322025(n) = v322025[n];
Showing 1-2 of 2 results.