cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A289624 a(n) = A002322(n)/A007947(A034380(n)).

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 1, 6, 4, 10, 1, 12, 6, 2, 2, 16, 6, 18, 2, 3, 10, 22, 1, 20, 12, 18, 3, 28, 2, 30, 4, 5, 16, 6, 3, 36, 18, 6, 2, 40, 3, 42, 5, 6, 22, 46, 2, 42, 20, 8, 6, 52, 18, 10, 3, 9, 28, 58, 2, 60, 30, 1, 8, 6, 5, 66, 8, 11, 6, 70, 3, 72, 36, 10, 9, 15, 6, 78, 2, 54, 40, 82, 3, 8, 42, 14, 5, 88, 6, 2, 11, 15, 46
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A002322(n) / A007947(A034380(n)) = A002322(n) / A007947(A000010(n) / A002322(n)).

A002322 Reduced totient function psi(n): least k such that x^k == 1 (mod n) for all x prime to n; also known as the Carmichael lambda function (exponent of unit group mod n); also called the universal exponent of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4, 4, 16, 6, 18, 4, 6, 10, 22, 2, 20, 12, 18, 6, 28, 4, 30, 8, 10, 16, 12, 6, 36, 18, 12, 4, 40, 6, 42, 10, 12, 22, 46, 4, 42, 20, 16, 12, 52, 18, 20, 6, 18, 28, 58, 4, 60, 30, 6, 16, 12, 10, 66, 16, 22, 12, 70, 6, 72, 36, 20, 18, 30, 12, 78, 4, 54
Offset: 1

Views

Author

Keywords

Comments

a(n) is the largest order of any element in the multiplicative group modulo n. - Joerg Arndt, Mar 19 2016
Largest period of repeating digits of 1/n written in different bases (i.e., largest value in each row of square array A066799 and least common multiple of each row). - Henry Bottomley, Dec 20 2001

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 53.
  • Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 269.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002322 n = foldl lcm 1 $ map (a207193 . a095874) $
                              zipWith (^) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Feb 16 2012
    
  • Magma
    [1] cat [ CarmichaelLambda(n) : n in [2..100]];
    
  • Maple
    with(numtheory); A002322 := lambda; [seq(lambda(n), n=1..100)];
  • Mathematica
    Table[CarmichaelLambda[k], {k, 50}] (* Artur Jasinski, Apr 05 2008 *)
  • PARI
    A002322(n)= lcm( apply( f -> (f[1]-1)*f[1]^(f[2]-1-(f[1]==2 && f[2]>2)), Vec(factor(n)~))) \\ M. F. Hasler, Jul 05 2009
    
  • PARI
    a(n)=lcm(znstar(n)[2]) \\ Charles R Greathouse IV, Aug 04 2012
    
  • Python
    from sympy import reduced_totient
    def A002322(n): return reduced_totient(n) # Chai Wah Wu, Feb 24 2021

Formula

If M = 2^e*P1^e1*P2^e2*...*Pk^ek, lambda(2^e) = 2^(e-1) if e=1 or 2, = 2^(e-2) if e > 2; lambda(M) = lcm(lambda(2^e), (P1-1)*P1^(e1-1), (P2-1)*P2^(e2-1), ..., (Pk-1)*Pk^(ek-1)).
a(n) = lcm_{k=1..A001221(n)} A207193(A095874(A027748(n,k)^A124010(n,k))). - Reinhard Zumkeller, Feb 16 2012

A033948 Numbers that have a primitive root (the multiplicative group modulo n is cyclic).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 22, 23, 25, 26, 27, 29, 31, 34, 37, 38, 41, 43, 46, 47, 49, 50, 53, 54, 58, 59, 61, 62, 67, 71, 73, 74, 79, 81, 82, 83, 86, 89, 94, 97, 98, 101, 103, 106, 107, 109, 113, 118, 121, 122, 125, 127, 131, 134, 137, 139
Offset: 1

Views

Author

Calculated by Jud McCranie, entered by N. J. A. Sloane

Keywords

Comments

The sequence consists of 1, 2, 4 and numbers of the form p^i and 2p^i, where p is an odd prime and i >= 1.
Sequence gives values of n such that x^2 == 1 (mod n) has no solution with 1 < x < n-1. - Benoit Cloitre, Jan 04 2002
Gaussian criterion for terms of the sequence: n is in the sequence iff Product_{1<=i<=n-1, gcd(i,n)=1} i == -1 (mod n), see example. - Vladimir Shevelev, Jan 11 2011
For the criterion used above see the Hardy and Wright reference, Theorem 129. p. 102, a consequence of Bauer's theorem. See also T. D. Noe's comment with the Nagell reference on A060594 and also A160377. - Wolfdieter Lang, Feb 16 2012
Also numbers n such that phi(n) = lambda(n) (or numbers with A034380(n)=1), where phi is A000010, and lambda is Carmichael's lambda: A002322. - Enrique Pérez Herrero, Jun 04 2013
All values of n>2 are given when there are exactly two solutions for n*j+1 is a square, 0 <= j < n, which are j = {0, n-2}. See Mathematica examples. - Richard R. Forberg, Mar 26 2016
Numbers n such that the Galois group of the cyclotomic field with the n-th roots of unity is a cyclic group. [Van der Waerden, p. 55, Th. 4.11.; Corwin, 1967] - N. J. A. Sloane, Nov 26 2016

Examples

			Gaussian product for n=9 is 1*2*4*5*7*8=2240. Since 2240==-1(mod 9), then 9 is in the sequence. - _Vladimir Shevelev_, Jan 11 2011
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, Theorem 129, p. 102.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, 4th edition, page 62, Theorem 2.25.
  • B. L. van der Waerden, Modern Algebra, 2nd. ed., Ungar, NY, Vol. I, 1948.

Crossrefs

Cf. A033949 (complement), A072209, A001783 (Gaussian products used in the V. Shevelev example).
Union of 1, 2, 4, A061345, A278568.

Programs

  • Maple
    m := proc(n) local k, r; r := 1; if n = 2 then return false fi;
    for k from 1 to n do if igcd(n,k) = 1 then r := modp(r*k,n) fi od; r end:
    select(n -> m(n) <> 1, [$1..139]); # Peter Luschny, May 25 2017
  • Mathematica
    Join[{1}, Select[ Range[140], IntegerQ[ PrimitiveRoot[#]] &]] (* Jean-François Alcover, Sep 27 2011 *)
    Select[Range[139], EulerPhi[#] == CarmichaelLambda[#] &] (* T. D. Noe, Jun 04 2013 *)
    result = {}; Do[count = 0;
    Do[If[Mod[j^2, n] == 1, count++], {j, 2, n - 2}];
    If[count == 0, AppendTo[result, n]], {n, 1, 200}]; result (* Richard R. Forberg, Mar 26 2016 *)
    result = {}; Do[count = 0;
    Do[ r = Sqrt[n*j + 1]; If[IntegerQ[r], count++], {j, 0, n}];
    If[count == 2, AppendTo[result, n]], {n, 0, 200}]; result  (* missing{1,2} Richard R. Forberg, Mar 26 2016 *)
  • PARI
    is(n)=if(n%2, isprimepower(n) || n==1, n==2 || n==4 || (isprimepower(n/2,&n) && n>2)) \\ Charles R Greathouse IV, Apr 16 2015
    
  • Python
    from sympy import primepi, integer_nthroot
    def A033948(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n-1+x-(x>=2)-(x>=4)-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))-sum(primepi(integer_nthroot(x>>1,k)[0])-1 for k in range(1,x.bit_length()-1)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 24 2025

A033949 Positive integers that do not have a primitive root.

Original entry on oeis.org

8, 12, 15, 16, 20, 21, 24, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 51, 52, 55, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 84, 85, 87, 88, 90, 91, 92, 93, 95, 96, 99, 100, 102, 104, 105, 108, 110, 111, 112, 114, 115, 116, 117, 119, 120, 123
Offset: 1

Views

Author

Calculated by Jud McCranie

Keywords

Comments

Numbers k such that the cyclotomic polynomial Phi(k,x) is reducible over Zp for all primes p. Harrison shows that this is equivalent to k > 2 and the discriminant of Phi(k,x), A004124(k), being a square. - T. D. Noe, Nov 06 2007
The multiplicative group modulo k is non-cyclic; the complement A033948. - Wolfdieter Lang, Mar 14 2012. See A281854 for the groups. - Wolfdieter Lang, Feb 04 2017
Numbers k with the property that there exists a positive integer m with 1 < m < k-1 and m^2 == 1 (mod k). - Reinhard Muehlfeld, May 27 2014
Also, numbers k for which A000010(k) > A002322(k), or equivalently A034380(k) > 1. - Ivan Neretin, Mar 28 2015
Numbers k of the form a + b + 2*sqrt(a*b + 1) for positive integers a,b such that a*b + 1 is a square. Proof: If 1 < m < k - 1 and m^2 == 1 (mod k), take a = (m^2 - 1)/k and b = ((k - m)^2 - 1)/k. Conversely, if k = a + b + 2*sqrt(a*b + 1), take m = a + sqrt(a*b + 1). - Tor Gunston, Apr 24 2021
Seems to be A050275 without the duplicates. - Charles R Greathouse IV, Feb 09 2025

References

  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, 4th edition, page 62, Theorem 2.25.

Crossrefs

Cf. A000010, A002322, A033948 (complement), A193305 (composites with primitive root).
Column k=1 of A277915, A281854.

Programs

  • Haskell
    a033949 n = a033949_list !! (n-1)
    a033949_list = filter
                   (\x -> any ((== 1) . (`mod` x) . (^ 2)) [2 .. x-2]) [1..]
    -- Reinhard Zumkeller, Dec 10 2014
    
  • Maple
    m := proc(n) local k, r; r := 1; if n = 2 then return false fi;
    for k from 1 to n do if igcd(n,k) = 1 then r := modp(r*k,n) fi od; r end:
    select(n -> m(n) = 1, [$1..123]); # Peter Luschny, May 25 2017
  • Mathematica
    Select[Range[2,130],!IntegerQ[PrimitiveRoot[#]]&] (* Harvey P. Dale, Oct 25 2011 *)
    a[n_] := Module[{j, l = {}}, While[Length[l] CarmichaelLambda[j], AppendTo[l, j]; Break[]]]]; l[[n]]]; Array[a, 100] (* Jean-François Alcover, May 29 2018, after Alois P. Heinz's Maple code for A277915 *)
  • PARI
    is(n)=n>7 && (!isprimepower(if(n%2,n,n/2)) || n>>valuation(n,2)==1) \\ Charles R Greathouse IV, Oct 08 2016
    
  • Python
    from itertools import count, islice
    from sympy.ntheory import sqrt_mod_iter
    def A033949_gen(): # generator of terms
        return filter(lambda n:max(filter(lambda k:k 1,count(3))
    A033949_list = list(islice(A033949_gen(),30)) # Chai Wah Wu, Oct 26 2022
    
  • Python
    from sympy import primepi, integer_nthroot
    def A033949(n):
        def f(x): return int(n+1+(x>=2)+(x>=4)+sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))+sum(primepi(integer_nthroot(x>>1,k)[0])-1 for k in range(1,x.bit_length()-1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Feb 24 2025
  • Sage
    [n for n in range(1,100) if not Integers(n).multiplicative_group_is_cyclic()]
    # Ralf Stephan, Mar 30 2014
    

Formula

Positive integers except 1, 2, 4 and numbers of the form p^i and 2p^i, where p is an odd prime and i >= 1.

A046072 Decompose multiplicative group of integers modulo n as a product of cyclic groups C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i < j; then a(n) = m.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 3, 1, 1, 1, 3, 2, 1, 2, 3, 1, 2, 2, 2, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2
Offset: 1

Views

Author

Keywords

Comments

The multiplicative group modulo n can be written as the direct product of a(n) (but not fewer) cyclic groups. - Joerg Arndt, Dec 25 2014
a(n) = 1 (that is, the multiplicative group modulo n is cyclic) iff n is in A033948, or equivalently iff A034380(n)=1. - Max Alekseyev, Jan 07 2015
This sequence gives the minimal number of generators of the multiplicative group of integers modulo n which is isomorphic to the Galois group Gal(Q(zeta_n)/Q), with zeta_n =exp(2*Pi*I/n). See, e.g., Theorem 9.1.11., p. 235 of the Cox reference. See also the table of the Wikipedia link. - Wolfdieter Lang, Feb 28 2017
In this factorization the trivial group C_1 = {1} is allowed as a factor only for n = 0 and 1 (otherwise one could have arbitrarily many leading C_1 factors for n >= 3). - Wolfdieter Lang, Mar 07 2017

References

  • David A. Cox, Galois Theory, John Wiley & Sons, Hoboken, New Jrsey, 2004, 235.
  • Daniel Shanks, Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 92-93, 1993.

Crossrefs

Cf. A001221, A046073 (number of squares in multiplicative group modulo n), A077761, A281855, A282625 (for total factorization).
a(n)=k iff n is in: A033948 (k=1), A272592 (k=2), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272596 (k=6), A272597 (k=7), A272598 (k=8), A272599 (k=9).

Programs

  • Mathematica
    f[n_] := Which[OddQ[n], PrimeNu[n], EvenQ[n] && ! IntegerQ[n/4],
      PrimeNu[n] - 1, IntegerQ[n/4] && ! IntegerQ[n/8], PrimeNu[n],
      IntegerQ[n/8], PrimeNu[n] + 1]; Join[{1, 1},
    Table[f[n], {n, 3, 102}]] (* Geoffrey Critzer, Dec 24 2014 *)
  • PARI
    a(n)=if(n<=2, 1, #znstar(n)[3]); \\ Joerg Arndt, Aug 26 2014

Formula

a(n) = A001221(n) - 1 if n > 2 is divisible by 2 and not by 4, a(n) = A001221(n) + 1 if n is divisible by 8, a(n) = A001221(n) in other cases. - Ivan Neretin, Aug 01 2016
Sum_{k=1..n} a(k) = n * (log(log(n)) + B - 1/8) + O(n/log(n)), where B is Mertens's constant (A077761). - Amiram Eldar, Sep 21 2024

A289626 Restricted growth sequence transform of A289625, related to the structure of multiplicative group of integers modulo n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 5, 4, 3, 6, 5, 7, 4, 8, 8, 9, 4, 10, 8, 11, 6, 12, 13, 14, 7, 10, 11, 15, 8, 16, 17, 18, 9, 19, 11, 20, 10, 19, 21, 22, 11, 23, 18, 19, 12, 24, 21, 23, 14, 25, 19, 26, 10, 27, 28, 29, 15, 30, 21, 31, 16, 32, 25, 33, 18, 34, 25, 35, 19, 36, 28, 37, 20, 27, 29, 38, 19, 39, 40, 41, 22, 42, 28, 43, 23, 44, 45, 46, 19, 47, 35, 38, 24, 48, 49
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2017

Keywords

Crossrefs

Cf. A000010, A002322, A034380, A046072, A289624 (some of the matching sequences).

Programs

  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A289625(n) = { my(m=1,p=2,v=znstar(n)[2]); for(i=1,length(v),m *= p^v[i]; p = nextprime(p+1)); (m); };
    write_to_bfile(1,rgs_transform(vector(16384,n,A289625(n))),"b289626_upto16384.txt");

A062373 Ratio of totient to Carmichael's lambda function is 2.

Original entry on oeis.org

8, 12, 15, 16, 20, 21, 28, 30, 32, 33, 35, 36, 39, 42, 44, 45, 51, 52, 55, 57, 64, 66, 68, 69, 70, 75, 76, 77, 78, 87, 90, 92, 93, 95, 99, 100, 102, 108, 110, 111, 114, 115, 116, 119, 123, 124, 128, 129, 135, 138, 141, 143, 147, 148, 150, 153, 154, 155, 159, 161
Offset: 1

Views

Author

Vladeta Jovovic, Jun 17 2001

Keywords

Comments

Numbers k such that the highest order of elements in (Z/kZ)* is phi(n)/2, (Z/kZ)* = the multiplicative group of integers modulo k. Also numbers k such that (Z/kZ)* = C_2 X C_(2r). - Jianing Song, Jul 28 2018
Contains the powers of 2 greater than 4, 4 times primes, and semiprimes pq where (p-1)/2 and (q-1)/2 are coprime. If n is odd and in this sequence then so is 2n. - Charlie Neder, May 27 2019

Examples

			From _Jianing Song_, Jul 28 2018: (Start)
(Z/8Z)* = C_2 X C_2, so 8 is a term.
(Z/21Z)* = C_2 X C_6, so 21 is a term.
(Z/35Z)* = C_2 X C_12, so 35 is a term. (End)
		

Crossrefs

Programs

  • Haskell
    a062373 n = a062373_list !! (n-1)
    a062373_list = filter ((== 2) . a034380) [1..]
    -- Reinhard Zumkeller, Sep 02 2014
    
  • Mathematica
    Reap[ For[ n = 1, n <= 161, n++, If[ EulerPhi[n] / CarmichaelLambda[n] == 2, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Mar 26 2013 *)
    Select[Range[200],EulerPhi[#]/CarmichaelLambda[#]==2&] (* Harvey P. Dale, Jun 27 2018 *)
  • PARI
    isok(n) = eulerphi(n)/lcm(znstar(n)[2]) == 2; \\ Michel Marcus, Jul 28 2018

Formula

Solutions to phi(k)/lambda(k) = 2.

Extensions

More terms from Reiner Martin, Dec 22 2001

A062377 Euler phi(n) / Carmichael lambda(n) = 10.

Original entry on oeis.org

275, 341, 451, 550, 671, 682, 775, 781, 902, 1111, 1271, 1342, 1375, 1441, 1550, 1562, 1661, 1775, 1991, 2101, 2201, 2222, 2321, 2542, 2651, 2750, 2761, 2882, 2911, 2981, 3025, 3091, 3131, 3275, 3322, 3421, 3550, 3641, 3751, 3775, 3875, 3982, 4061
Offset: 1

Views

Author

Vladeta Jovovic, Jun 17 2001

Keywords

Comments

Solutions to A000010(n)/A002322(n)=10.

Crossrefs

Programs

  • Mathematica
    Reap[ For[ n = 1, n <= 4061, n++, If[ EulerPhi[n] / CarmichaelLambda[n] == 10, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Mar 26 2013 *)
    Select[Range[4100],EulerPhi[#]/CarmichaelLambda[#]==10&] (* Harvey P. Dale, Dec 22 2022 *)
  • PARI
    {cmf(f)=if( ((f[1]==2)&&(f[2]>2)),eulerphi(f[1]^f[2])/2, eulerphi(f[1]^f[2])) } {cl(f)= k=factor(f); l=1; for(x=1,omega(f),l=lcm(l,cmf([k[x,1], k[x,2]]))); l } {A062377(n)=eulerphi(n)/cl(n)} for(x=1,10001, if(A062377(x)==10,print1(x,",")))

Extensions

More terms from Randall L Rathbun, Jan 12 2002

A062374 Euler phi(n) / Carmichael lambda(n) = 4.

Original entry on oeis.org

24, 40, 48, 56, 60, 65, 72, 84, 85, 88, 96, 104, 105, 112, 130, 132, 136, 140, 144, 145, 152, 156, 165, 170, 176, 180, 184, 185, 192, 200, 204, 205, 210, 216, 220, 221, 224, 228, 231, 232, 248, 265, 276, 285, 288, 290, 296, 300, 304, 305, 308, 325, 328, 330
Offset: 1

Views

Author

Vladeta Jovovic, Jun 17 2001

Keywords

Comments

Solutions to A000010(n)/A002322(n)=4.

Crossrefs

Programs

  • Mathematica
    Select[Range[400],EulerPhi[#]/CarmichaelLambda[#]==4&] (* Harvey P. Dale, May 23 2011 *)
  • PARI
    {cmf(f)=if( ((f[1]==2)&&(f[2]>2)),eulerphi(f[1]^f[2])/2, eulerphi(f[1]^f[2])) } {cl(f)= k=factor(f); l=1; for(x=1,omega(f),l=lcm(l,cmf([k[x,1], k[x,2]]))); l } {A062374(n)=eulerphi(n)/cl(n)} for(x=1,10001, if(A062374(x)==4,print1(x,",")))

Extensions

More terms from Randall L Rathbun, Jan 12 2002

A062375 Euler phi(n) / Carmichael lambda(n) = 6.

Original entry on oeis.org

63, 91, 117, 126, 133, 171, 182, 189, 217, 234, 247, 259, 266, 279, 301, 333, 342, 351, 378, 387, 403, 427, 434, 441, 469, 494, 511, 518, 549, 553, 558, 559, 567, 589, 602, 603, 637, 657, 666, 679, 702, 711, 721, 763, 774, 806, 817, 837, 854, 871, 873, 882
Offset: 1

Views

Author

Vladeta Jovovic, Jun 17 2001

Keywords

Comments

Solutions to A000010(n)/A002322(n)=6.

Crossrefs

Programs

  • PARI
    {cmf(f)=if( ((f[1]==2)&&(f[2]>2)),eulerphi(f[1]^f[2])/2, eulerphi(f[1]^f[2])) } {cl(f)= k=factor(f); l=1; for(x=1,omega(f),l=lcm(l,cmf([k[x,1], k[x,2]]))); l } {A062375(n)=eulerphi(n)/cl(n)} for(x=1,10001, if(A062375(x)==6,print1(x,",")))

Extensions

More terms from Randall L Rathbun, Jan 12 2002
Showing 1-10 of 25 results. Next