cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Reinhard Muehlfeld

Reinhard Muehlfeld's wiki page.

Reinhard Muehlfeld has authored 6 sequences.

A245599 Numbers m with A030101(m) XOR A030109(m) = m for the binary representation of m.

Original entry on oeis.org

1, 11, 91, 731, 5851, 46811, 374491, 2995931, 23967451, 191739611, 1533916891, 12271335131, 98170681051, 785365448411, 6282923587291, 50263388698331, 402107109586651, 3216856876693211, 25734855013545691, 205878840108365531, 1647030720866924251, 13176245766935394011
Offset: 1

Author

Reinhard Muehlfeld, Jul 27 2014

Keywords

Comments

Sequence consists of all numbers with binary representation 1(011)*.

Examples

			A030101(11) = 13,  A030109(11) = 6, and 13 XOR 6 = (1101)_2 XOR (0110)_2 = (1011)_2 = 11, so 11 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (5*8^n - 12)/28; Array[a, 20] (* Giovanni Resta, Apr 25 2020 *)
  • PARI
    Vec(x*(1 + 2*x) / ((1 - x)*(1 - 8*x)) + O(x^20)) \\ Colin Barker, Apr 25 2020

Formula

a(n) = 1(011)^(n-1) in binary representation.
a(n) = (5*8^n - 12)/28. - Giovanni Resta, Apr 25 2020
From Colin Barker, Apr 25 2020: (Start)
G.f.: x*(1 + 2*x) / ((1 - x)*(1 - 8*x)).
a(n) = 9*a(n-1) - 8*a(n-2) for n>2.
(End)

Extensions

More terms from Giovanni Resta, Apr 25 2020

A245471 If n is odd, then a(n) = A065621(n+1). If n is even, then a(n) = n/2.

Original entry on oeis.org

2, 1, 4, 2, 14, 3, 8, 4, 26, 5, 28, 6, 22, 7, 16, 8, 50, 9, 52, 10, 62, 11, 56, 12, 42, 13, 44, 14, 38, 15, 32, 16, 98, 17, 100, 18, 110, 19, 104, 20, 122, 21, 124, 22, 118, 23, 112, 24, 82, 25, 84, 26, 94, 27, 88, 28, 74, 29, 76, 30, 70, 31, 64, 32, 194, 33, 196, 34, 206, 35, 200, 36, 218, 37, 220, 38, 214, 39, 208, 40, 242, 41, 244, 42, 254, 43, 248, 44, 234, 45, 236, 46, 230, 47, 224, 48, 162, 49, 164, 50, 174, 51, 168, 52, 186, 53, 188, 54, 182, 55, 176, 56, 146, 57, 148, 58, 158, 59, 152, 60
Offset: 1

Author

Reinhard Muehlfeld, Jul 23 2014

Keywords

Comments

A Collatz-like function: the difference is that for odd n the term 3n+1 is calculated without overflow, only using xor operations (n xor(2n+1)). It is known that for each argument the iterated function always ends up in a cycle which contains 1 (namely 1-2-1).

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a245471 n = a245471_list !! (n-1)
    a245471_list = concat $ transpose [odds a065621_list, [1..]]
       where odds [] = []; odds [x] = []; odds (_:x:xs) = x : odds xs
    -- Reinhard Zumkeller, Jul 27 2014
    
  • Python
    def A245471(n): return (m:=n+1)^ (m&~-m)<<1 if n&1 else n>>1 # Chai Wah Wu, Jun 29 2022

Extensions

Definition corrected by Chai Wah Wu, Jun 29 2022

A245202 Numbers k such that tau(k) + phi(k) is a perfect square.

Original entry on oeis.org

3, 9, 21, 24, 26, 30, 51, 72, 77, 84, 90, 93, 100, 119, 122, 162, 168, 174, 194, 210, 213, 221, 276, 282, 291, 301, 381, 384, 386, 408, 414, 437, 469, 510, 527, 533, 564, 594, 597, 616, 723, 731, 744, 770, 791, 794, 858, 869, 896, 917, 930, 948, 952, 954
Offset: 1

Author

Reinhard Muehlfeld, Jul 13 2014

Keywords

Comments

Numbers k such that A000010(k) + A000005(k) is a perfect square.

Examples

			3 is in the sequence because phi(3) + tau(3) = 2 + 2 = 4^2.
9 is in the sequence because phi(9) + tau(9) = 6 + 3 = 3^2.
15 is not in the sequence because phi(15) + tau(15) = 8 + 4 = 12 = 2^2 * 3, which is not a perfect square.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], IntegerQ[Sqrt[DivisorSigma[0, #] + EulerPhi[#]]] &] (* Amiram Eldar, Apr 27 2024 *)
  • PARI
    isok(n) = issquare(numdiv(n) + eulerphi(n)); \\ Michel Marcus, Jul 23 2014
    
  • Python
    from sympy import totient, divisor_count
    from gmpy2 import is_square
    [n for n in range(1,10**4) if is_square(int(divisor_count(n)+totient(n)))] # Chai Wah Wu, Aug 04 2014

A245199 Numbers n where phi(n) and tau(n) are perfect squares.

Original entry on oeis.org

1, 8, 10, 34, 57, 74, 85, 125, 185, 202, 219, 394, 451, 456, 489, 505, 514, 546, 570, 629, 640, 679, 680, 802, 985, 1000, 1026, 1057, 1154, 1285, 1354, 1365, 1387, 1417, 1480, 1717, 1752, 1938, 2005, 2016, 2047, 2176, 2190, 2340, 2457, 2509, 2565, 2594, 2649
Offset: 1

Author

Reinhard Muehlfeld, Jul 13 2014

Keywords

Comments

Numbers n such that A000005(n) and A000010(n) are perfect squares.
Intersection of A036436 and A039770. - Michel Marcus, Jul 15 2014

Examples

			8 is in the sequence because phi(8) = 4, tau(8) = 4, and 4 is a perfect square.
12 is not in the sequence because tau(12) = 6 is not a square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) uses numtheory; issqr(phi(n)) and issqr(tau(n)) end proc:
    select(filter, [$1..1000]); # Robert Israel, Jul 27 2014
  • Mathematica
    fQ[n_] := IntegerQ@ Sqrt@ EulerPhi[n] && IntegerQ@ Sqrt@ DivisorSigma[0, n]; Select[ Range@ 3000, fQ] (* Robert G. Wilson v, Jul 21 2014 *)
    Select[Range[3000],AllTrue[{Sqrt[EulerPhi[#]],Sqrt[DivisorSigma[0, #]]}, IntegerQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 01 2018 *)
  • PARI
    isok(n) = issquare(numdiv(n)) && issquare(eulerphi(n)); \\ Michel Marcus, Jul 15 2014
    
  • Python
    from sympy import totient, divisor_count
    from gmpy2 import is_square
    [n for n in range(1,10**4) if is_square(int(divisor_count(n))) and is_square(int(totient(n)))] # Chai Wah Wu, Aug 04 2014

A245047 Numbers n where phi(n)|n or tau(n)|n.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 84, 88, 96, 104, 108, 128, 132, 136, 144, 152, 156, 162, 180, 184, 192, 204, 216, 225, 228, 232, 240, 248, 252, 256, 276, 288, 296, 324, 328, 344, 348, 360, 372, 376, 384, 396, 424, 432, 441, 444, 448, 450
Offset: 1

Author

Reinhard Muehlfeld, Jul 13 2014

Keywords

Comments

Phi(n) is Euler totient function (A000010); tau(n) is the number of divisors of n (A000005).
Union of A007694 and A033950. - Michel Marcus, Jul 15 2014

Crossrefs

Programs

  • Maple
    select(t -> (t mod numtheory:-phi(t) = 0) or (t mod numtheory:-tau(t) = 0), [$1..1000]); # Robert Israel, Jul 15 2014
  • Mathematica
    Select[Range[500],AnyTrue[{#/EulerPhi[#],#/DivisorSigma[0,#]},IntegerQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 12 2020 *)
  • PARI
    isok(n) = !((n % eulerphi(n)) && (n % numdiv(n))); \\ Michel Marcus, Jul 15 2014

A245197 Numbers n where tau(n) and n-tau(n) are perfect squares, with tau(n) the number of divisors of n (A000005).

Original entry on oeis.org

1, 8, 85, 125, 365, 445, 533, 629, 965, 1685, 1800, 1853, 2340, 2605, 2813, 3029, 3973, 4765, 5045, 5220, 5629, 5933, 6245, 6893, 8285, 8653, 11029, 11453, 11885, 12773, 14165, 15133, 16645, 17165, 17460, 17693, 20453, 21029, 22205, 22805, 23413, 24653, 27229
Offset: 1

Author

Reinhard Muehlfeld, Jul 13 2014

Keywords

Comments

Subsequence of A036436. - Michel Marcus, Jul 15 2014
Intersection of A036436 and A245388. - Robert Israel, Jul 20 2014

Crossrefs

Cf. A000005 (tau(n)), A049820 (n - tau(n)), A036436 (n such that tau(n) is square), A245388 (n such that n - tau(n) is square).

Programs

  • Maple
    filter:= proc(n) local t;
      t:= numtheory:-tau(n);
      issqr(t) and issqr(n-t)
    end proc;
    select(filter, [$1..10^5]); # Robert Israel, Jul 20 2014
  • Mathematica
    okQ[n_] := With[{t = DivisorSigma[0, n]}, IntegerQ@Sqrt[t] && IntegerQ@Sqrt[n-t]];
    Select[Range[10^5], okQ] (* Jean-François Alcover, Feb 08 2023 *)
  • PARI
    isok(n) = issquare(numdiv(n)) && issquare(n-numdiv(n)); \\ Michel Marcus, Jul 15 2014