A340873
a(n) is the number of iterations of A245471 needed to reach 1 starting from n.
Original entry on oeis.org
0, 1, 3, 2, 6, 4, 4, 3, 11, 7, 7, 5, 9, 5, 5, 4, 12, 12, 12, 8, 8, 8, 8, 6, 10, 10, 10, 6, 14, 6, 6, 5, 21, 13, 13, 13, 13, 13, 13, 9, 17, 9, 9, 9, 17, 9, 9, 7, 19, 11, 11, 11, 11, 11, 11, 7, 15, 15, 15, 7, 15, 7, 7, 6, 22, 22, 22, 14, 14, 14, 14, 14, 22, 14
Offset: 1
For n = 10:
- the trajectory of 10 is 10 -> 5 -> 14 -> 7 -> 8 -> 4 -> 2 -> 1,
- so a(10) = 7.
-
a(n) = for (k=0, oo, if (n==1, return (k), n%2, n=bitxor(n, 2*n+1), n=n/2))
A341231
Irregular triangle read by rows giving trajectory from n to reach 1 under the map A245471.
Original entry on oeis.org
1, 2, 1, 3, 4, 2, 1, 4, 2, 1, 5, 14, 7, 8, 4, 2, 1, 6, 3, 4, 2, 1, 7, 8, 4, 2, 1, 8, 4, 2, 1, 9, 26, 13, 22, 11, 28, 14, 7, 8, 4, 2, 1, 10, 5, 14, 7, 8, 4, 2, 1, 11, 28, 14, 7, 8, 4, 2, 1, 12, 6, 3, 4, 2, 1, 13, 22, 11, 28, 14, 7, 8, 4, 2, 1, 14, 7, 8, 4, 2, 1
Offset: 1
Table begins:
1;
2, 1;
3, 4, 2, 1;
4, 2, 1;
5, 14, 7, 8, 4, 2, 1;
6, 3, 4, 2, 1;
7, 8, 4, 2, 1;
8, 4, 2, 1;
9, 26, 13, 22, 11, 28, 14, 7, 8, 4, 2, 1;
10, 5, 14, 7, 8, 4, 2, 1;
11, 28, 14, 7, 8, 4, 2, 1;
12, 6, 3, 4, 2, 1;
13, 22, 11, 28, 14, 7, 8, 4, 2, 1;
14, 7, 8, 4, 2, 1;
15, 16, 8, 4, 2, 1;
16, 8, 4, 2, 1;
...
-
row(n) = { my (r=[n]); while (n>1, r=concat(r, n=if (n%2, bitxor(n, 2*n+1), n/2))); r }
A065621
Reversing binary representation of n. Converting sum of powers of 2 in binary representation of a(n) to alternating sum gives n.
Original entry on oeis.org
1, 2, 7, 4, 13, 14, 11, 8, 25, 26, 31, 28, 21, 22, 19, 16, 49, 50, 55, 52, 61, 62, 59, 56, 41, 42, 47, 44, 37, 38, 35, 32, 97, 98, 103, 100, 109, 110, 107, 104, 121, 122, 127, 124, 117, 118, 115, 112, 81, 82, 87, 84, 93, 94, 91, 88, 73, 74, 79, 76, 69, 70, 67, 64, 193
Offset: 1
a(5) = 13 = 8 + 4 + 1 -> 8 - 4 + 1 = 5.
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 178, (exercise 4.1. Nr. 27)
-
import Data.Bits (xor, (.&.))
a065621 n = n `xor` 2 * (n - n .&. negate n) :: Integer
-- Reinhard Zumkeller, Mar 26 2014
-
f[n_] := BitXor[n, 2 n + 1]; Array[f, 60, 0] (* Robert G. Wilson v, Jun 09 2010 *)
-
a(n)=if(n<2,1,if(n%2==0,2*a(n/2),2*a((n+1)/2)-2*(-1)^((n-1)/2)+1))
-
def a(n): return n^(2*(n - (n & -n))) # Indranil Ghosh, Jun 04 2017
-
def A065621(n): return n^ (n&~-n)<<1 # Chai Wah Wu, Jun 29 2022
A341235
a(n) is the greatest term in n-th row of A341231.
Original entry on oeis.org
1, 2, 4, 4, 14, 6, 8, 8, 28, 14, 28, 12, 28, 14, 16, 16, 62, 28, 52, 20, 62, 28, 56, 24, 62, 28, 44, 28, 52, 30, 32, 32, 122, 62, 100, 36, 110, 52, 104, 40, 122, 62, 124, 44, 118, 56, 112, 48, 122, 62, 84, 52, 112, 54, 88, 56, 110, 58, 76, 60, 100, 62, 64, 64
Offset: 1
For n = 10:
- the trajectory of 10 under A245471 is 10 -> 5 -> 14 -> 7 -> 8 -> 4 -> 2 -> 1,
- so a(10) = 14.
-
a(n) = { my (m=n); while (n>1, m=max(m, n=if (n%2, bitxor(n, 2*n+1), n/2))); m }
Showing 1-4 of 4 results.
Comments