cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 74 results. Next

A115872 Square array where row n gives all solutions k > 0 to the cross-domain congruence n*k = A048720(A065621(n),k), zero sequence (A000004) if no such solutions exist.

Original entry on oeis.org

1, 2, 1, 3, 2, 3, 4, 3, 6, 1, 5, 4, 7, 2, 7, 6, 5, 12, 3, 14, 3, 7, 6, 14, 4, 15, 6, 7, 8, 7, 15, 5, 28, 7, 14, 1, 9, 8, 24, 6, 30, 12, 15, 2, 15, 10, 9, 28, 7, 31, 14, 28, 3, 30, 7, 11, 10, 30, 8, 56, 15, 30, 4, 31, 14, 3, 12, 11, 31, 9, 60, 24, 31, 5, 60, 15, 6, 3, 13, 12, 48, 10, 62, 28, 56, 6, 62, 28, 12, 6, 5, 14, 13, 51, 11, 63, 30, 60, 7, 63, 30, 15, 7, 10, 7
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2006

Keywords

Comments

Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).
Square array is read by descending antidiagonals, as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
Rows at positions 2^k are 1, 2, 3, ..., (A000027). Row 2n is equal to row n.
Numbers on each row give a subset of positions of zeros at the corresponding row of A284270. - Antti Karttunen, May 08 2019

Examples

			Fifteen initial terms of rows 1 - 19 are listed below:
   1:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
   2:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
   3:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...
   4:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
   5:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
   6:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...
   7:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
   8:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
   9: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
  10:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
  11:  3,  6, 12,  15,  24,  27,  30,  31,  48,  51,  54,  60,  62,  63,  96, ...
  12:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...
  13:  5, 10, 15,  20,  21,  30,  31,  40,  42,  45,  47,  60,  61,  62,  63, ...
  14:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
  15: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
  16:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
  17: 31, 62, 63, 124, 126, 127, 248, 252, 254, 255, 496, 504, 508, 510, 511, ...
  18: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
  19:  7, 14, 28,  31,  56,  62,  63, 112, 119, 124, 126, 127, 224, 238, 248, ...
		

Crossrefs

Transpose: A114388. First column: A115873.
Cf. also arrays A277320, A277810, A277820, A284270.
A few odd-positioned rows: row 1: A000027, Row 3: A048717, Row 5: A115770 (? Checked for all values less than 2^20), Row 7: A115770, Row 9: A115801, Row 11: A115803, Row 13: A115772, Row 15: A115801 (? Checked for all values less than 2^20), Row 17: A115809, Row 19: A115874, Row 49: A114384, Row 57: A114386.

Programs

  • Mathematica
    X[a_, b_] := Module[{A, B, C, x},
         A = Reverse@IntegerDigits[a, 2];
         B = Reverse@IntegerDigits[b, 2];
         C = Expand[
            Sum[A[[i]]*x^(i-1), {i, 1, Length[A]}]*
            Sum[B[[i]]*x^(i-1), {i, 1, Length[B]}]];
         PolynomialMod[C, 2] /. x -> 2];
    T[n_, k_] := Module[{x = BitXor[n-1, 2n-1], k0 = k},
         For[i = 1, True, i++, If[n*i == X[x, i],
         If[k0 == 1, Return[i], k0--]]]];
    Table[T[n-k+1, k], {n, 1, 14}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 04 2022 *)
  • PARI
    up_to = 120;
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A115872sq(n, k) = { my(x = A065621(n)); for(i=1,oo,if((n*i)==A048720(x,i),if(1==k,return(i),k--))); };
    A115872list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A115872sq(col,(a-(col-1))))); (v); };
    v115872 = A115872list(up_to);
    A115872(n) = v115872[n]; \\ (Slow) - Antti Karttunen, May 08 2019

Extensions

Example section added and the data section extended up to n=105 by Antti Karttunen, May 08 2019

A277320 Square array A(r,c) = A048720(A065621(r), c), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 2, 2, 3, 4, 7, 4, 6, 14, 4, 5, 8, 9, 8, 13, 6, 10, 28, 12, 26, 14, 7, 12, 27, 16, 23, 28, 11, 8, 14, 18, 20, 52, 18, 22, 8, 9, 16, 21, 24, 57, 56, 29, 16, 25, 10, 18, 56, 28, 46, 54, 44, 24, 50, 26, 11, 20, 63, 32, 35, 36, 39, 32, 43, 52, 31, 12, 22, 54, 36, 104, 42, 58, 40, 100, 46, 62, 28, 13, 24, 49, 40, 101, 112, 49, 48, 125, 104, 33, 56, 21
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Examples

			The top left corner of the array:
   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12
   2,   4,   6,   8,  10,  12,  14,  16,  18,  20,  22,  24
   7,  14,   9,  28,  27,  18,  21,  56,  63,  54,  49,  36
   4,   8,  12,  16,  20,  24,  28,  32,  36,  40,  44,  48
  13,  26,  23,  52,  57,  46,  35, 104, 101, 114, 127,  92
  14,  28,  18,  56,  54,  36,  42, 112, 126, 108,  98,  72
  11,  22,  29,  44,  39,  58,  49,  88,  83,  78,  69, 116
   8,  16,  24,  32,  40,  48,  56,  64,  72,  80,  88,  96
  25,  50,  43, 100, 125,  86,  79, 200, 209, 250, 227, 172
  26,  52,  46, 104, 114,  92,  70, 208, 202, 228, 254, 184
  31,  62,  33, 124,  99,  66,  93, 248, 231, 198, 217, 132
  28,  56,  36, 112, 108,  72,  84, 224, 252, 216, 196, 144
  21,  42,  63,  84,  65, 126, 107, 168, 189, 130, 151, 252
  22,  44,  58,  88,  78, 116,  98, 176, 166, 156, 138, 232
  19,  38,  53,  76,  95, 106, 121, 152, 139, 190, 173, 212
  16,  32,  48,  64,  80,  96, 112, 128, 144, 160, 176, 192
  49,  98,  83, 196, 245, 166, 151, 392, 441, 490, 475, 332
  50, 100,  86, 200, 250, 172, 158, 400, 418, 500, 454, 344
  55, 110,  89, 220, 235, 178, 133, 440, 399, 470, 481, 356
		

Crossrefs

Transpose: A277199.
Main diagonal: A277699.
Row 1: A000027, Row 3: A048727.
Column 1: A065621, Column 3: A277823, Column 5: A277825.
Cf. A277820 (array obtained by selecting only the columns with an index A001317(k), k=0..).

Programs

Formula

A(r,c) = A048720(A065621(r), c).

A277699 Main diagonal of A277320: a(n) = A048720(n, A065621(n)).

Original entry on oeis.org

1, 4, 9, 16, 57, 36, 49, 64, 209, 228, 217, 144, 233, 196, 225, 256, 801, 836, 809, 912, 793, 868, 785, 576, 1009, 932, 1017, 784, 969, 900, 961, 1024, 3137, 3204, 3145, 3344, 3193, 3236, 3185, 3648, 3217, 3172, 3225, 3472, 3241, 3140, 3233, 2304, 3937, 4036, 3945, 3728, 3929, 4068, 3921
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Crossrefs

Cf. A277704, A277706 (the positions of squares/nonsquares in this sequence).
Cf. A277805 (nonsquares in the order of appearance).

Programs

Formula

a(n) = A277320(n,n) = A048720(n, A065621(n)).
For n > 1, a(A023758(n)) = A000290(A023758(n)).

A325567 a(1) = 1; for n > 1, a(n) is the largest proper divisor d of n such that A048720(A065621(d),n/d) is equal to n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 11, 2, 5, 12, 1, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 16, 7, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 13, 22, 1, 4, 1, 10, 1, 24, 1, 2, 5, 4, 1, 2, 1, 16, 1, 2, 1, 12, 1, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 32, 1, 14, 1, 4, 1, 2, 1, 8, 7
Offset: 1

Views

Author

Antti Karttunen, May 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A325567(n) = if(1==n,n,fordiv(n,d,if((d>1)&&A048720(A065621(n/d),d)==n,return(n/d))));

A277820 Square array: A(r,1) = A065621(r); for c > 1, A(r,c) = A048724(A(r,c-1)), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 3, 2, 5, 6, 7, 15, 10, 9, 4, 17, 30, 27, 12, 13, 51, 34, 45, 20, 23, 14, 85, 102, 119, 60, 57, 18, 11, 255, 170, 153, 68, 75, 54, 29, 8, 257, 510, 427, 204, 221, 90, 39, 24, 25, 771, 514, 765, 340, 359, 238, 105, 40, 43, 26, 1285, 1542, 1799, 1020, 937, 306, 187, 120, 125, 46, 31, 3855, 2570, 2313, 1028, 1275, 854, 461, 136, 135, 114, 33, 28
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Comments

For all n >= 1, A277818 (= A268389(n)+1) gives the (one-based) index of the column where n is located in this array, while A268671(n) gives the (one-based) index of the row where it is on.
This array is obtained when one selects from A277320 the columns 1, 3, 5, 15, 17, 51, ..., i.e., those with an index A001317(k).

Examples

			The top left corner of the array:
   1,  3,   5,  15,  17,   51,   85,  255,   257,   771,  1285,  3855
   2,  6,  10,  30,  34,  102,  170,  510,   514,  1542,  2570,  7710
   7,  9,  27,  45, 119,  153,  427,  765,  1799,  2313,  6939, 11565
   4, 12,  20,  60,  68,  204,  340, 1020,  1028,  3084,  5140, 15420
  13, 23,  57,  75, 221,  359,  937, 1275,  3341,  5911, 14649, 19275
  14, 18,  54,  90, 238,  306,  854, 1530,  3598,  4626, 13878, 23130
  11, 29,  39, 105, 187,  461,  599, 1785,  2827,  7453, 10023, 26985
   8, 24,  40, 120, 136,  408,  680, 2040,  2056,  6168, 10280, 30840
  25, 43, 125, 135, 393,  667, 1965, 2295,  6425, 11051, 32125, 34695
  26, 46, 114, 150, 442,  718, 1874, 2550,  6682, 11822, 29298, 38550
  31, 33,  99, 165, 495,  561, 1619, 2805,  7967,  8481, 25443, 42405
  28, 36, 108, 180, 476,  612, 1708, 3060,  7196,  9252, 27756, 46260
  21, 63,  65, 195, 325,  975, 1105, 3315,  5397, 16191, 16705, 50115
  22, 58,  78, 210, 374,  922, 1198, 3570,  5654, 14906, 20046, 53970
  19, 53,  95, 225, 291,  869, 1455, 3825,  4883, 13621, 24415, 57825
  16, 48,  80, 240, 272,  816, 1360, 4080,  4112, 12336, 20560, 61680
  49, 83, 245, 287, 801, 1379, 4005, 4335, 12593, 21331, 62965, 73247
  50, 86, 250, 270, 786, 1334, 3930, 4590, 12850, 22102, 64250, 69390
  55, 89, 235, 317, 839, 1481, 3675, 4845, 14135, 22873, 60395, 80957
		

Crossrefs

Inverse permutation: A277821.
Transpose: A277819.
Row 1: A001317.
Column 1: A065621, column 2: A277823, column 3: A277825.
Other related tables or permutations: A277880, A277901.

Programs

Formula

A(r,1) = A065621(r); for c > 1, A(r,c) = A048724(A(r,c-1)).
A(r,c) = A048675(A277810(r,c)).
As a composition of other permutations:
a(n) = A277901(A277880(n)).

A325565 a(n) is the number of such divisors d of n that A048720(A065621(d),n/d) is equal to n.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 4, 2, 2, 1, 3, 1, 2, 1, 5, 1, 4, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 2, 2, 2, 6, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 5, 2, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 2, 4, 1, 3, 1, 4, 1, 8, 1, 2, 2, 3, 1, 2, 1, 5, 1, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 6, 1, 4, 1, 3, 1, 2, 1, 4, 2
Offset: 1

Views

Author

Antti Karttunen, May 09 2019

Keywords

Comments

Equally, a(n) is number of such pairs of natural numbers t, u that A048720(t,u) = n and A065620(t)*u = n.

Crossrefs

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A325565(n) = sumdiv(n,d,A048720(A065621(d),n/d)==n);
    
  • PARI
    A065620(n, c=1) = sum(i=0, logint(n+!n, 2), if(bittest(n, i), (-1)^c++<A065620
    A325565(n) = { my(p = Pol(binary(n))*Mod(1, 2)); sum(d=1,n,my(q = Pol(binary(d))*Mod(1, 2)); (0==(p%q) && (n==(A065620(d)*fromdigits(Vec(lift(p/q)),2))))); };

Formula

a(n) = Sum_{d|n} [A048720(A065621(d),n/d) == n], where [ ] is the Iverson bracket.
a(n) / a(A000265(n)) = A001511(n).
a(n) <= A000005(n) for all n.
a(n) <= A091220(n) for all n.

A379113 a(1) = 1; for n > 1, a(n) is the greatest proper unitary divisor d of n such that A048720(A065621(sigma(d)),sigma(n/d)) is equal to sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 7, 3, 1, 1, 1, 1, 5, 7, 11, 1, 3, 1, 2, 1, 7, 1, 15, 1, 1, 3, 1, 7, 1, 1, 1, 3, 5, 1, 21, 1, 11, 1, 23, 1, 3, 1, 2, 3, 13, 1, 1, 11, 7, 3, 2, 1, 15, 1, 31, 7, 1, 5, 33, 1, 1, 3, 35, 1, 9, 1, 1, 3, 19, 7, 6, 1, 5, 1, 1, 1, 21, 1, 43, 3, 11, 1, 1, 7, 23, 31, 47, 1, 3, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2024

Keywords

Crossrefs

Cf. A000203, A048720, A065621, A379114 (positions of terms > 1), A379119.
Cf. also A325567.

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A379113(n) = if(1==n,n,my(s=sigma(n)); fordiv(n,d,if((d>1) && 1==gcd(d,n/d) && A048720(A065621(sigma(n/d)),sigma(d))==s,return(n/d))));

Formula

a(n) = n/A379119(n).

A277823 a(n) = A048724(A065621(n)).

Original entry on oeis.org

3, 6, 9, 12, 23, 18, 29, 24, 43, 46, 33, 36, 63, 58, 53, 48, 83, 86, 89, 92, 71, 66, 77, 72, 123, 126, 113, 116, 111, 106, 101, 96, 163, 166, 169, 172, 183, 178, 189, 184, 139, 142, 129, 132, 159, 154, 149, 144, 243, 246, 249, 252, 231, 226, 237, 232, 219, 222, 209, 212, 207, 202, 197, 192, 323, 326, 329, 332, 343, 338, 349, 344, 363, 366, 353
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Crossrefs

Column 2 of A277820.
Column 3 of A277320.

Programs

Formula

a(n) = A048724(A065621(n)).
a(n) = A277320(n,3) = A048720(A065621(n),3).

A325566 a(n) is the largest divisor d of n such that A048720(A065621(d),n/d) = n.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 4, 1, 2, 1, 16, 1, 6, 1, 4, 3, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 11, 2, 5, 12, 1, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 16, 7, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 64, 13, 22, 1, 4, 1, 10, 1, 24, 1, 2, 5, 4, 1, 2, 1, 16, 1, 2, 1, 12, 1, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 32, 1, 14, 1, 4, 1, 2, 1, 8, 7
Offset: 1

Views

Author

Antti Karttunen, May 09 2019

Keywords

Crossrefs

Cf. A048720, A065621, A325565, A325567, A325570 (positions of ones).

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A325566(n) = fordiv(n,d,if(A048720(A065621(n/d),d)==n,return(n/d)));

A246163 Permutation of natural numbers: a(1) = 1, a(A014580(n)) = A065621(1+a(n)), a(A091242(n)) = A048724(a(n)), where A065621(n) and A048724(n) give the reversing binary representation of n and -n, respectively, and A014580 resp. A091242 are the binary coded irreducible resp. reducible polynomials over GF(2).

Original entry on oeis.org

1, 2, 7, 3, 6, 9, 8, 5, 10, 27, 4, 24, 11, 15, 30, 45, 12, 40, 26, 29, 17, 34, 119, 20, 25, 120, 46, 39, 51, 102, 14, 153, 60, 43, 136, 114, 31, 105, 85, 170, 44, 18, 427, 68, 125, 408, 13, 150, 33, 187, 255, 510, 116, 54, 41, 765, 204, 135, 28, 680, 16, 23, 442, 99, 461, 257, 35, 514, 156, 90, 123, 1799, 118, 340, 393, 36
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2014

Keywords

Comments

This is an instance of entanglement permutation, where the two complementary pairs to be entangled with each other are A014580/A091242 (binary codes for irreducible and reducible polynomials over GF(2)) and A065621/A048724, the latter which themselves are permutations of A000069/A001969 (odious and evil numbers), which means that this permutation shares many properties with A246161.
Because 3 is the only evil number in A014580, it implies that, apart from a(3)=7, odious numbers occur in odious positions only (along with many evil numbers that also occur in odious positions).
Furthermore, all terms of A246158 reside in infinite cycles, and apart from 4 and 8, all of them reside in separate cycles. The infinite cycle containing 4 and 8 goes as: ..., 2091, 97, 47, 13, 11, 4, 3, 7, 8, 5, 6, 9, 10, 27, 46, 408, 2535, ... and it is only because a(3) = 7, that it can temporarily switch back from evil terms to odious terms, until right after a(8) = 5 it is finally doomed to the eternal evilness.
Please see also the comments at A246201 and A246161.

Crossrefs

Inverse: A246164.
Similar or related permutations: A246205, A193231, A246201, A234026, A245701, A234612, A246161, A246203.

Formula

a(1) = 1, and for n > 1, if n is in A014580, a(n) = A065621(1+a(A091226(n))), otherwise a(n) = A048724(a(A091245(n))).
As a composition of related permutations:
a(n) = A193231(A246201(n)).
a(n) = A234026(A245701(n)).
a(n) = A234612(A246161(n)).
a(n) = A193231(A246203(A193231(n))).
Other identities:
For all n > 1, A010060(a(n)) = A091225(n). [Maps binary representations of irreducible GF(2) polynomials (A014580) to odious numbers and the corresponding representations of reducible polynomials (A091242) to evil numbers, in some order].
Showing 1-10 of 74 results. Next