cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A115873 First column of A115872.

Original entry on oeis.org

1, 1, 3, 1, 7, 3, 7, 1, 15, 7, 3, 3, 5, 7, 15, 1, 31, 15, 7, 7, 31, 3, 7, 3, 31, 5, 31, 7, 31, 15, 31, 1, 63, 31, 15, 15, 7, 7, 7, 7, 63, 31, 3, 3, 63, 7, 15, 3, 21, 31, 63, 5, 63, 31, 7, 7, 9, 31, 63, 15, 21, 31, 63, 1, 127, 63, 31, 31, 15, 15, 15, 15, 127, 7, 31, 7, 15, 7, 15, 7, 51
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2006

Keywords

Crossrefs

Programs

  • Mathematica
    X[a_, b_] := Module[{A, B, C, x},
       A = Reverse@IntegerDigits[a, 2];
       B = Reverse@IntegerDigits[b, 2];
       C = Expand[
          Sum[A[[i]]*x^(i - 1), {i, 1, Length[A]}]*
          Sum[B[[i]]*x^(i - 1), {i, 1, Length[B]}]];
       PolynomialMod[C, 2] /. x -> 2];
    T[n_, k_] := Module[{x = BitXor[n - 1, 2 n - 1], k0 = k},
         For[i = 1, True, i++, If[n*i == X[x, i],
         If[k0 == 1, Return[i], k0--]]]];
    a[n_] := T[n, 1];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 04 2022 *)

Formula

a(2^k) = 1, a(2n) = a(n).

A114388 Transpose of table A115872.

Original entry on oeis.org

1, 1, 2, 3, 2, 3, 1, 6, 3, 4, 7, 2, 7, 4, 5, 3, 14, 3, 12, 5, 6, 7, 6, 15, 4, 14, 6, 7, 1, 14, 7, 28, 5, 15, 7, 8, 15, 2, 15, 12, 30, 6, 24, 8, 9, 7, 30, 3, 28, 14, 31, 7, 28, 9, 10, 3, 14, 31, 4, 30, 15, 56, 8, 30, 10, 11, 3, 6, 15, 60, 5, 31, 24, 60, 9, 31, 11, 12, 5, 6, 12, 28, 62, 6
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2006

Keywords

Crossrefs

Cf. A115872.
First row: A115873.

Programs

  • Mathematica
    X[a_, b_] := Module[{A, B, C, x},
         A = Reverse@IntegerDigits[a, 2];
         B = Reverse@IntegerDigits[b, 2];
         C = Expand[
            Sum[A[[i]]*x^(i - 1), {i, 1, Length[A]}]*
            Sum[B[[i]]*x^(i - 1), {i, 1, Length[B]}]];
         PolynomialMod[C, 2] /. x -> 2];
    S[n_, k_] := Module[{x = BitXor[n - 1, 2 n - 1], k0 = k},
         For[i = 1, True, i++,If[n*i == X[x, i],
         If[k0 == 1, Return[i], k0--]]]];
    T[n_, k_] := S[k, n];
    Table[T[n - k + 1, k], {n, 1, 14}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 04 2022 *)

A048720 Multiplication table {0..i} X {0..j} of binary polynomials (polynomials over GF(2)) interpreted as binary vectors, then written in base 10; or, binary multiplication without carries.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 5, 8, 5, 0, 0, 6, 10, 12, 12, 10, 6, 0, 0, 7, 12, 15, 16, 15, 12, 7, 0, 0, 8, 14, 10, 20, 20, 10, 14, 8, 0, 0, 9, 16, 9, 24, 17, 24, 9, 16, 9, 0, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 0, 11, 20, 27, 32, 27, 20, 27, 32, 27, 20, 11, 0
Offset: 0

Views

Author

Antti Karttunen, Apr 26 1999

Keywords

Comments

Essentially same as A091257 but computed starting from offset 0 instead of 1.
Each polynomial in GF(2)[X] is encoded as the number whose binary representation is given by the coefficients of the polynomial, e.g., 13 = 2^3 + 2^2 + 2^0 = 1101_2 encodes 1*X^3 + 1*X^2 + 0*X^1 + 1*X^0 = X^3 + X^2 + X^0. - Antti Karttunen and Peter Munn, Jan 22 2021
To listen to this sequence, I find instrument 99 (crystal) works well with the other parameters defaulted. - Peter Munn, Nov 01 2022

Examples

			Top left corner of array:
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ...
  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
  0  2  4  6  8 10 12 14 16 18 20 22 24 26 28 30 ...
  0  3  6  5 12 15 10  9 24 27 30 29 20 23 18 17 ...
  ...
From _Antti Karttunen_ and _Peter Munn_, Jan 23 2021: (Start)
Multiplying 10 (= 1010_2) and 11 (= 1011_2), in binary results in:
     1011
  *  1010
  -------
   c1011
  1011
  -------
  1101110  (110 in decimal),
and we see that there is a carry-bit (marked c) affecting the result.
In carryless binary multiplication, the second part of the process (in which the intermediate results are summed) looks like this:
    1011
  1011
  -------
  1001110  (78 in decimal).
(End)
		

Crossrefs

Cf. A051776 (Nim-product), A091257 (subtable).
Carryless multiplication in other bases: A325820 (3), A059692 (10).
Ordinary {0..i} * {0..j} multiplication table: A004247 and its differences from this: A061858 (which lists further sequences related to presence/absence of carry in binary multiplication).
Carryless product of the prime factors of n: A234741.
Binary irreducible polynomials ("X-primes"): A014580, factorization table: A256170, table of "X-powers": A048723, powers of 3: A001317, rearranged subtable with distinct terms (comparable to A054582): A277820.
See A014580 for further sequences related to the difference between factorization into GF(2)[X] irreducibles and ordinary prime factorization of the integer encoding.
Row/column 3: A048724 (even bisection of A003188), 5: A048725, 6: A048726, 7: A048727; main diagonal: A000695.
Associated additive operation: A003987.
Equivalent sequences, as compared with standard integer multiplication: A048631 (factorials), A091242 (composites), A091255 (gcd), A091256 (lcm), A280500 (division).
See A091202 (and its variants) and A278233 for maps from/to ordinary multiplication.
See A115871, A115872 and A277320 for tables related to cross-domain congruences.

Programs

  • Maple
    trinv := n -> floor((1+sqrt(1+8*n))/2); # Gives integral inverses of the triangular numbers
    # Binary multiplication of nn and mm, but without carries (use XOR instead of ADD):
    Xmult := proc(nn,mm) local n,m,s; n := nn; m := mm; s := 0; while (n > 0) do if(1 = (n mod 2)) then s := XORnos(s,m); fi; n := floor(n/2); # Shift n right one bit. m := m*2; # Shift m left one bit. od; RETURN(s); end;
  • Mathematica
    trinv[n_] := Floor[(1 + Sqrt[1 + 8*n])/2];
    Xmult[nn_, mm_] := Module[{n = nn, m = mm, s = 0}, While[n > 0, If[1 == Mod[n, 2], s = BitXor[s, m]]; n = Floor[n/2]; m = m*2]; Return[s]];
    a[n_] := Xmult[(trinv[n] - 1)*((1/2)*trinv[n] + 1) - n, n - (trinv[n]*(trinv[n] - 1))/2];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 16 2015, updated Mar 06 2016 after Maple *)
  • PARI
    up_to = 104;
    A048720sq(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A048720list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0, oo, for(col=0, a, i++; if(i > up_to, return(v)); v[i] = A048720sq(col, a-col))); (v); };
    v048720 = A048720list(up_to);
    A048720(n) = v048720[1+n]; \\ Antti Karttunen, Feb 15 2021

Formula

a(n) = Xmult( (((trinv(n)-1)*(((1/2)*trinv(n))+1))-n), (n-((trinv(n)*(trinv(n)-1))/2)) );
T(2b, c)=T(c, 2b)=T(b, 2c)=2T(b, c); T(2b+1, c)=T(c, 2b+1)=2T(b, c) XOR c - Henry Bottomley, Mar 16 2001
For n >= 0, A003188(2n) = T(n, 3); A003188(2n+1) = T(n, 3) XOR 1, where XOR is the bitwise exclusive-or operator, A003987. - Peter Munn, Feb 11 2021

A065621 Reversing binary representation of n. Converting sum of powers of 2 in binary representation of a(n) to alternating sum gives n.

Original entry on oeis.org

1, 2, 7, 4, 13, 14, 11, 8, 25, 26, 31, 28, 21, 22, 19, 16, 49, 50, 55, 52, 61, 62, 59, 56, 41, 42, 47, 44, 37, 38, 35, 32, 97, 98, 103, 100, 109, 110, 107, 104, 121, 122, 127, 124, 117, 118, 115, 112, 81, 82, 87, 84, 93, 94, 91, 88, 73, 74, 79, 76, 69, 70, 67, 64, 193
Offset: 1

Views

Author

Marc LeBrun, Nov 07 2001

Keywords

Comments

a(0)=0. The alternation is applied only to the nonzero bits and does not depend on the exponent of two. All integers have a unique reversing binary representation (see cited exercise for proof). Complement of A048724.
A permutation of the "odious" numbers A000069.
Write n-1 and 2n-1 in binary and add them mod 2; example: n = 6, n-1 = 5 = 101 in binary, 2n-1 = 11 = 1011 in binary and their sum is 1110 = 14, so a(6) = 14. - Philippe Deléham, Apr 29 2005
As already pointed out, this is a permutation of the odious numbers A000069 and A010060(A000069(n)) = 1, so A010060(a(n)) = 1; and A010060(A048724(n)) = 0. - Philippe Deléham, Apr 29 2005. Also a(n) = A000069(A003188(n - 1)).

Examples

			a(5) = 13 = 8 + 4 + 1 -> 8 - 4 + 1 = 5.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 178, (exercise 4.1. Nr. 27)

Crossrefs

Differs from A115857 for the first time at n=19, where a(19)=55, while A115857(19)=23. Cf. A104895, A115872, A114389, A114390, A105081.
Cf. A245471.

Programs

  • Haskell
    import Data.Bits (xor, (.&.))
    a065621 n = n `xor` 2 * (n - n .&. negate n) :: Integer
    -- Reinhard Zumkeller, Mar 26 2014
    
  • Mathematica
    f[n_] := BitXor[n, 2 n + 1]; Array[f, 60, 0] (* Robert G. Wilson v, Jun 09 2010 *)
  • PARI
    a(n)=if(n<2,1,if(n%2==0,2*a(n/2),2*a((n+1)/2)-2*(-1)^((n-1)/2)+1))
    
  • Python
    def a(n): return n^(2*(n - (n & -n))) # Indranil Ghosh, Jun 04 2017
    
  • Python
    def A065621(n): return n^ (n&~-n)<<1 # Chai Wah Wu, Jun 29 2022

Formula

a(n) = if n=0 or n=1 then n else b+2*a(b+(1-2*b)*n)/2) where b is the least significant bit in n.
a(n) = n XOR 2 (n - (n AND -n)).
a(1) = 1, a(2n) = 2*a(n), a(2n+1) = 2*a(n+1) - 2(-1)^n + 1. - Ralf Stephan, Aug 20 2003
a(n) = A048724(n-1) - (-1)^n. - Ralf Stephan, Sep 10 2003
a(n) = Sum_{k=0..n} (1-(-1)^round(-n/2^k))/2*2^k. - Benoit Cloitre, Apr 27 2005
Closely related to Gray codes in another way: a(n) = 2 * A003188(n-1) + (n mod 2); a(n) = 4 * A003188((n-1) div 2) + (n mod 4). - Matt Erbst (matt(AT)erbst.org), Jul 18 2006 [corrected by Peter Munn, Jan 30 2021]
a(n) = n XOR 2(n AND NOT -n). - Chai Wah Wu, Jun 29 2022
a(n) = A003188(2n-1). - Friedjof Tellkamp, Jan 18 2024

Extensions

More terms from Ralf Stephan, Sep 08 2003

A234742 Product of the binary encodings of the irreducible factors (with multiplicity) of the polynomial over GF(2) whose encoding is n.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 7, 8, 21, 18, 11, 12, 13, 14, 27, 16, 81, 42, 19, 36, 49, 22, 39, 24, 25, 26, 63, 28, 33, 54, 31, 32, 93, 162, 91, 84, 37, 38, 99, 72, 41, 98, 75, 44, 189, 78, 47, 48, 77, 50, 243, 52, 57, 126, 55, 56, 117, 66, 59, 108, 61, 62, 147, 64, 441
Offset: 0

Views

Author

Antti Karttunen, Jan 22 2014

Keywords

Comments

"Product" refers to the ordinary multiplication of integers.
Differs from A235042 and A236837 for the first time at n=25, where a(n)=25, while A235042(25)=5 and A236837(25)=0. Thus A234741(A234742(n)) = n up to n=24.
a(n) >= n. [All terms of the table A061858 are nonnegative as the product of multiplying two numbers with carries is never less than when multiplying them without carries.]
Specifically, for all n, a(A091209(n)) > A091209(n).
a(A091209(n)) is always composite and, by the above inequality, larger than A091209(n), which implies that none of the terms of A091209 occur in this sequence. Cf. also A236844.
Starting with various terms (primes) in A235033 and iterating the map A234742, we get 5 -> 9 -> 21 -> 49 -> 77 -> 177 -> 333 = a(333).
Another example: 17 -> 81 -> 169 -> 309 -> 721 = a(721).
Does every chain of such iterations eventually reach a fixed point? (One of the terms of A235035.) Or do some of them manage to avoid such "traps" indefinitely? (Note how the terms of A235035 seem to get rarer, but only rather slowly.)
Starting from 23, we get the sequence: 23, 39, 99, 279, 775, 1271, 3003, 26411, 45059, ... which reaches its fixed point, 3643749709604450870616156947649219, after 55 iterations. - M. F. Hasler, Feb 18 2014. [This is now sequence A244323. See also A260729, A260735 and A260441.] - Antti Karttunen, Aug 05 2015
Note also that when coming backwards from some term of such a chain by iterating A234741, we may not necessarily end at the same term we started from.

Examples

			3 has binary representation '11', which encodes the polynomial X + 1, which is irreducible in GF(2)[X], so the result is just a(3)=3.
5 has binary representation '101' which encodes the polynomial X^2 + 1, which is reducible in the polynomial ring GF(2)[X], factoring as (X+1)(X+1), i.e., 5 = A048720(3,3), as 3 ('11' in binary) encodes the polynomial (X+1), irreducible in GF(2)[X]. 3*3 = 9, thus a(5)=9.
9 has binary representation '1001', which encodes the polynomial X^3 + 1, which factors (in GF(2)[X]!) as (X+1)(X^2+X+1), i.e., 9 = A048720(3,7) (7, '111' in binary, encodes the other factor polynomial X^2+X+1). 3*7 = 21, thus a(9)=21.
25 has binary representation '11001', which encodes the polynomial X^4 + X^3 + 1, which is irreducible in GF(2)[X], so the result is just a(25)=25.
		

Crossrefs

A235035 gives the k for which a(k)=k.
A236853(n) gives the number of times n occurs in this sequence.
A236842 gives the same sequence sorted and with duplicates removed, A236844 gives the numbers that do not occur here, A236845 gives numbers that occur more than once, A236846 the least inverse and A236847 the greatest inverse. A236850 gives such k that a(k) = A236837(k).
Cf. also A260712, A260713, A260716 and A244323, A260729, A260735, A260441 (iterations starting from various terms of A236844).

Programs

Formula

To compute a(n): factor the polynomial over GF(2) encoded by n, into its irreducible factors; in other words, find a unique multiset of terms i, j, ..., k (not necessarily distinct) from A014580 for which i x j x ... x k = n, where x stands for the carryless multiplication A048720. Then a(n) = i*j*...*k is the product of those terms with ordinary multiplication. Because of the effect of the carry-bits in the latter, the result is always greater than or equal to n, so we have a(n) >= n for all n.
a(2n) = 2*a(n).
a(A235035(n)) = A235035(n).
A236379(n) = a(n) - n.
For all n, a(n) >= A236837(n).

A277320 Square array A(r,c) = A048720(A065621(r), c), read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 2, 2, 3, 4, 7, 4, 6, 14, 4, 5, 8, 9, 8, 13, 6, 10, 28, 12, 26, 14, 7, 12, 27, 16, 23, 28, 11, 8, 14, 18, 20, 52, 18, 22, 8, 9, 16, 21, 24, 57, 56, 29, 16, 25, 10, 18, 56, 28, 46, 54, 44, 24, 50, 26, 11, 20, 63, 32, 35, 36, 39, 32, 43, 52, 31, 12, 22, 54, 36, 104, 42, 58, 40, 100, 46, 62, 28, 13, 24, 49, 40, 101, 112, 49, 48, 125, 104, 33, 56, 21
Offset: 1

Views

Author

Antti Karttunen, Nov 01 2016

Keywords

Examples

			The top left corner of the array:
   1,   2,   3,   4,   5,   6,   7,   8,   9,  10,  11,  12
   2,   4,   6,   8,  10,  12,  14,  16,  18,  20,  22,  24
   7,  14,   9,  28,  27,  18,  21,  56,  63,  54,  49,  36
   4,   8,  12,  16,  20,  24,  28,  32,  36,  40,  44,  48
  13,  26,  23,  52,  57,  46,  35, 104, 101, 114, 127,  92
  14,  28,  18,  56,  54,  36,  42, 112, 126, 108,  98,  72
  11,  22,  29,  44,  39,  58,  49,  88,  83,  78,  69, 116
   8,  16,  24,  32,  40,  48,  56,  64,  72,  80,  88,  96
  25,  50,  43, 100, 125,  86,  79, 200, 209, 250, 227, 172
  26,  52,  46, 104, 114,  92,  70, 208, 202, 228, 254, 184
  31,  62,  33, 124,  99,  66,  93, 248, 231, 198, 217, 132
  28,  56,  36, 112, 108,  72,  84, 224, 252, 216, 196, 144
  21,  42,  63,  84,  65, 126, 107, 168, 189, 130, 151, 252
  22,  44,  58,  88,  78, 116,  98, 176, 166, 156, 138, 232
  19,  38,  53,  76,  95, 106, 121, 152, 139, 190, 173, 212
  16,  32,  48,  64,  80,  96, 112, 128, 144, 160, 176, 192
  49,  98,  83, 196, 245, 166, 151, 392, 441, 490, 475, 332
  50, 100,  86, 200, 250, 172, 158, 400, 418, 500, 454, 344
  55, 110,  89, 220, 235, 178, 133, 440, 399, 470, 481, 356
		

Crossrefs

Transpose: A277199.
Main diagonal: A277699.
Row 1: A000027, Row 3: A048727.
Column 1: A065621, Column 3: A277823, Column 5: A277825.
Cf. A277820 (array obtained by selecting only the columns with an index A001317(k), k=0..).

Programs

Formula

A(r,c) = A048720(A065621(r), c).

A235041 Factorization-preserving bijection from nonnegative integers to GF(2)[X]-polynomials, version which fixes the elements that are irreducible in both semirings.

Original entry on oeis.org

0, 1, 2, 3, 4, 25, 6, 7, 8, 5, 50, 11, 12, 13, 14, 43, 16, 55, 10, 19, 100, 9, 22, 87, 24, 321, 26, 15, 28, 91, 86, 31, 32, 29, 110, 79, 20, 37, 38, 23, 200, 41, 18, 115, 44, 125, 174, 47, 48, 21, 642, 89, 52, 117, 30, 227, 56, 53, 182, 59, 172, 61, 62, 27, 64
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2014

Keywords

Comments

Like A091202 this is a factorization-preserving isomorphism from integers to GF(2)[X]-polynomials. The latter are encoded in the binary representation of n like this: n=11, '1011' in binary, stands for polynomial x^3+x+1, n=25, '11001' in binary, stands for polynomial x^4+x^3+1. However, this version does not map the primes (A000040) straight to the irreducible GF(2)[X] polynomials (A014580), but instead fixes the intersection of those two sets (A091206), and maps the elements in their set-wise difference A000040 \ A014580 (= A091209) in numerical order to the set-wise difference A014580 \ A000040 (= A091214).
The composite values are defined by the multiplicativity. E.g., we have a(3n) = A048724(a(n)) and a(3^n) = A001317(n) for all n.
This map satisfies many of the same identities as A091202, e.g., we have A000005(n) = A091220(a(n)), A001221(n) = A091221(a(n)), A001222(n) = A091222(a(n)) and A008683(n) = A091219(a(n)) for all n >= 1.

Examples

			Here (t X u) = A048720(t,u):
a(2)=2, a(3)=3 and a(7)=7, as 2, 3 and 7 are all in A091206.
a(4) = a(2*2) = a(2) X a(2) = 2 X 2 = 4.
a(9) = a(3*3) = a(3) X a(3) = 3 X 3 = 5.
a(5) = 25, as 5 is the first term of A091209 and 25 is the first term of A091214.
a(10) = a(2*5) = a(2) X a(5) = 2 X 25 = 50.
Similarly, a(17) = 55, as 17 is the second term of A091209 and 55 is the second term of A091214.
a(21) = a(3*7) = a(3) X a(7) = 3 X 7 = 9.
		

Crossrefs

Inverse: A235042. Fixed points: A235045.
Similar cross-multiplicative permutations: A091202, A091204, A106442, A106444, A106446.

Formula

a(0)=0, a(1)=1, a(p) = p for those primes p whose binary representations encode also irreducible GF(2)[X]-polynomials (i.e., p is in A091206), and for the rest of the primes q (those whose binary representation encode composite GF(2)[X]-polynomials, i.e., q is in A091209), a(q) = A091214(A235043(q)), and for composite natural numbers, a(p * q * r * ...) = a(p) X a(q) X a(r) X ..., where p, q, r, ... are primes and X stands for the carryless multiplication (A048720) of GF(2)[X] polynomials encoded as explained in the Comments section.

A325567 a(1) = 1; for n > 1, a(n) is the largest proper divisor d of n such that A048720(A065621(d),n/d) is equal to n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 11, 2, 5, 12, 1, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 16, 7, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 13, 22, 1, 4, 1, 10, 1, 24, 1, 2, 5, 4, 1, 2, 1, 16, 1, 2, 1, 12, 1, 2, 1, 8, 1, 6, 1, 4, 3, 2, 1, 32, 1, 14, 1, 4, 1, 2, 1, 8, 7
Offset: 1

Views

Author

Antti Karttunen, May 09 2019

Keywords

Crossrefs

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A325567(n) = if(1==n,n,fordiv(n,d,if((d>1)&&A048720(A065621(n/d),d)==n,return(n/d))));

A325565 a(n) is the number of such divisors d of n that A048720(A065621(d),n/d) is equal to n.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 4, 2, 2, 1, 3, 1, 2, 1, 5, 1, 4, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 2, 2, 2, 6, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 5, 2, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 2, 4, 1, 3, 1, 4, 1, 8, 1, 2, 2, 3, 1, 2, 1, 5, 1, 2, 1, 6, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 6, 1, 4, 1, 3, 1, 2, 1, 4, 2
Offset: 1

Views

Author

Antti Karttunen, May 09 2019

Keywords

Comments

Equally, a(n) is number of such pairs of natural numbers t, u that A048720(t,u) = n and A065620(t)*u = n.

Crossrefs

Programs

  • PARI
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A325565(n) = sumdiv(n,d,A048720(A065621(d),n/d)==n);
    
  • PARI
    A065620(n, c=1) = sum(i=0, logint(n+!n, 2), if(bittest(n, i), (-1)^c++<A065620
    A325565(n) = { my(p = Pol(binary(n))*Mod(1, 2)); sum(d=1,n,my(q = Pol(binary(d))*Mod(1, 2)); (0==(p%q) && (n==(A065620(d)*fromdigits(Vec(lift(p/q)),2))))); };

Formula

a(n) = Sum_{d|n} [A048720(A065621(d),n/d) == n], where [ ] is the Iverson bracket.
a(n) / a(A000265(n)) = A001511(n).
a(n) <= A000005(n) for all n.
a(n) <= A091220(n) for all n.

A115857 Smallest integer m > n, such that there exists nonzero solutions to a cross-domain congruence n*i = m X i, n if no such integer exists.

Original entry on oeis.org

1, 2, 7, 4, 13, 14, 11, 8, 25, 26, 31, 28, 21, 22, 19, 16, 49, 50, 23, 52, 29, 62, 47, 56, 41, 42, 31, 44, 37, 38, 35, 32, 97, 98, 39, 100, 61, 46, 63, 104, 105, 58, 59, 124, 53, 94, 55, 112, 81, 82, 55, 84, 93, 62, 59, 88, 73, 74, 63, 76, 69, 70, 67, 64, 193, 194, 71, 196, 77
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2006

Keywords

Comments

Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).

Crossrefs

a(2n) = 2*a(n). Bisection A115858 gives only the odd terms. Differs from A065621 for the first time at n=19, where a(19)=23, while A065621(19)=55. The next differences are a(21)=29 (A065621(21)=61) and a(23)=47 (A065621(23)=59). Cf. A115859, A115861, A115869, A115871, A115872.
Showing 1-10 of 25 results. Next