cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A034380 Ratio of totient to Carmichael's lambda function: a(n) = A000010(n) / A002322(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 4, 1, 2, 1, 2, 2, 1, 1, 4, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 4, 1, 1, 6, 2, 4, 2, 1, 2, 2, 2, 1, 4, 1, 1, 2, 2, 2, 2, 1, 8, 1, 1, 1, 4, 4, 1, 2, 4, 1, 2, 6, 2, 2, 1, 2, 4, 1, 1, 2, 2, 1, 2, 1, 4, 4
Offset: 1

Views

Author

Keywords

Comments

a(n)=1 if and only if the multiplicative group modulo n is cyclic (that is, if n is either 1, 2, 4, or of the form p^k or 2*p^k where p is an odd prime). In other words: a(n)=1 if n is a term of A033948, otherwise a(n) > 1 (and n is a term of A033949). - Joerg Arndt, Jul 14 2012

Crossrefs

Programs

Formula

a(n) = A000010(n) / A002322(n).
a(A033948(n)) = 1 [Banks & Luca]. - R. J. Mathar, Jul 29 2007
A002322(n)/A007947(a(n)) = A289624(n). - Antti Karttunen, Jul 17 2017

A289626 Restricted growth sequence transform of A289625, related to the structure of multiplicative group of integers modulo n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 5, 4, 3, 6, 5, 7, 4, 8, 8, 9, 4, 10, 8, 11, 6, 12, 13, 14, 7, 10, 11, 15, 8, 16, 17, 18, 9, 19, 11, 20, 10, 19, 21, 22, 11, 23, 18, 19, 12, 24, 21, 23, 14, 25, 19, 26, 10, 27, 28, 29, 15, 30, 21, 31, 16, 32, 25, 33, 18, 34, 25, 35, 19, 36, 28, 37, 20, 27, 29, 38, 19, 39, 40, 41, 22, 42, 28, 43, 23, 44, 45, 46, 19, 47, 35, 38, 24, 48, 49
Offset: 1

Views

Author

Antti Karttunen, Jul 18 2017

Keywords

Crossrefs

Cf. A000010, A002322, A034380, A046072, A289624 (some of the matching sequences).

Programs

  • PARI
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A289625(n) = { my(m=1,p=2,v=znstar(n)[2]); for(i=1,length(v),m *= p^v[i]; p = nextprime(p+1)); (m); };
    write_to_bfile(1,rgs_transform(vector(16384,n,A289625(n))),"b289626_upto16384.txt");

A080400 Largest squarefree number dividing phi(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 6, 2, 6, 2, 10, 2, 6, 6, 2, 2, 2, 6, 6, 2, 6, 10, 22, 2, 10, 6, 6, 6, 14, 2, 30, 2, 10, 2, 6, 6, 6, 6, 6, 2, 10, 6, 42, 10, 6, 22, 46, 2, 42, 10, 2, 6, 26, 6, 10, 6, 6, 14, 58, 2, 30, 30, 6, 2, 6, 10, 66, 2, 22, 6, 70, 6, 6, 6, 10, 6, 30, 6, 78, 2, 6, 10, 82, 6, 2, 42, 14, 10, 22
Offset: 1

Views

Author

Labos Elemer, Mar 19 2003

Keywords

Comments

Also largest squarefree number dividing Carmichael's lambda, A002322(n). - Antti Karttunen, Jul 17 2017

Crossrefs

Programs

  • Mathematica
    Table[Max[Select[Divisors[EulerPhi[n]],SquareFreeQ]],{n,90}] (* Harvey P. Dale, Jul 05 2012 *)
    a[n_] := Times @@ FactorInteger[EulerPhi[n]][[;; , 1]]; Array[a, 100] (* Amiram Eldar, Jun 18 2022 *)
  • PARI
    A080400(n) = factorback(factorint(eulerphi(n))[, 1]); \\ Antti Karttunen & David A. Corneth, Jul 16 2017

Formula

a(n) = A007947(A000010(n)).
a(m * n) = A007947(a(m) * a(n)) if gcd(m, n) = 1. - David A. Corneth, Jul 16 2017
a(n) = A007947(A002322(n)). - Antti Karttunen, Jul 17 2017
Showing 1-3 of 3 results.