cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A034380 Ratio of totient to Carmichael's lambda function: a(n) = A000010(n) / A002322(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 4, 1, 2, 1, 2, 2, 1, 1, 4, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 4, 1, 1, 6, 2, 4, 2, 1, 2, 2, 2, 1, 4, 1, 1, 2, 2, 2, 2, 1, 8, 1, 1, 1, 4, 4, 1, 2, 4, 1, 2, 6, 2, 2, 1, 2, 4, 1, 1, 2, 2, 1, 2, 1, 4, 4
Offset: 1

Views

Author

Keywords

Comments

a(n)=1 if and only if the multiplicative group modulo n is cyclic (that is, if n is either 1, 2, 4, or of the form p^k or 2*p^k where p is an odd prime). In other words: a(n)=1 if n is a term of A033948, otherwise a(n) > 1 (and n is a term of A033949). - Joerg Arndt, Jul 14 2012

Crossrefs

Programs

Formula

a(n) = A000010(n) / A002322(n).
a(A033948(n)) = 1 [Banks & Luca]. - R. J. Mathar, Jul 29 2007
A002322(n)/A007947(a(n)) = A289624(n). - Antti Karttunen, Jul 17 2017

A151999 Numbers k such that every prime that divides phi(k) also divides k.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 32, 34, 36, 40, 42, 48, 50, 54, 60, 64, 68, 72, 78, 80, 84, 90, 96, 100, 102, 108, 110, 114, 120, 126, 128, 136, 144, 150, 156, 160, 162, 168, 170, 180, 192, 200, 204, 210, 216, 220, 222, 228, 234, 240, 250, 252, 256, 270
Offset: 1

Views

Author

J. Luis A. Yebra and J. Jimenez Urroz (yebra(AT)mat.upc.es), Nov 19 2008

Keywords

Comments

Alternative descriptions:
(a) For every prime p|n and every prime q|p-1 we have q|n;
(b) Numbers n such that radical of phi(n) divides radical of n, where phi is Euler's totient function and radical is the squarefree kernel function.
These numbers are "valid bases".
Numbers n such that radical of phi(n) divides n. - Michel Marcus, Nov 06 2017
Pollack and Pomerance call these numbers "phi-deficient numbers". - Amiram Eldar, Jun 02 2020

Crossrefs

Cf. A007947 (radical of n), A007694 (phi(n) divides n, a subsequence).
Cf. A080400 (radical of phi(n)).
Cf. A152000.

Programs

  • Magma
    [n: n in [1..300] | forall{d: d in PrimeDivisors(EulerPhi(n)) | IsIntegral(n/d)}]; // Bruno Berselli, Nov 04 2017
    
  • Maple
    A151999 := proc(n)
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                pdvs := numtheory[factorset](a) ;
                aworks := true;
                for p in numtheory[factorset](a) do
                    for q in numtheory[factorset](p-1) do
                        if a mod q = 0 then
                            ;
                        else
                            aworks := false;
                        end if;
                    end do:
                end do:
                if aworks then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jun 01 2013
  • Mathematica
    Rad[n_]:=Times@@Transpose[FactorInteger[n]][[1]]; Select[1 + Range[300], Mod[Rad[#], Rad[EulerPhi[#]]]==0 &] (* José María Grau Ribas, Jan 09 2012 *)
  • PARI
    isok(n) = {fp = factor(n); for (i=1, #fp[, 1], fq = factor(fp[i, 1] - 1); for (j=1, #fq[, 1], if (n % fq[j, 1], return (0)););); return (1);} \\ Michel Marcus, Jun 01 2013
    
  • PARI
    isok(n) = (n % factorback(factor(eulerphi(n))[, 1])) == 0; \\ Michel Marcus, Nov 04 2017
    
  • Sage
    for n in range(1, 271):
        if euler_phi(n)**2 == euler_phi(euler_phi(n) * n): print(n, end=', ') # Torlach Rush, Oct 01 2024

Extensions

Corrected by Michel Marcus, Jun 01 2013
Edited by N. J. A. Sloane, Jun 02 2013 at the suggestion of Michel Marcus, merging this with A204010
Deleted erroneous comment and added correct b-file by Paolo P. Lava, Nov 06 2017

A187731 Numbers n such that rad(phi(n)) divides n-1.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 51, 53, 59, 61, 67, 71, 73, 79, 83, 85, 89, 91, 97, 101, 103, 107, 109, 113, 127, 131, 133, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 247, 251, 255, 257, 259
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A003277 (cyclic numbers).
Let L(x) = exp(log x log log log x/log log x). McNew shows that there are at most x/L(x)^(1+o(1)) members of this sequence up to x. - Charles R Greathouse IV, Oct 08 2012
Contains all primes A000040 and all Carmichael numbers A002997. - Jeppe Stig Nielsen, Jul 27 2020

Examples

			15 is in the sequence because phi(15)=8, rad(8)=2 and 2 divides 15-1.
		

Crossrefs

Cf. A000010, A002997 (Carmichael numbers), A003277 (cyclic numbers), A007947, A080400.

Programs

  • Mathematica
    rad[n_]:=Times@@Transpose[FactorInteger[n]][[1]]; Select[Range[1000], Mod[#-1,rad[EulerPhi[#]]]==0&]
  • PARI
    rad(n)=n=factor(n);prod(i=1,#n[,1],n[i,1]);
    for(n=1,1e4,if((n-1)%rad(eulerphi(n))==0,print1(n", "))) \\ Charles R Greathouse IV, Jul 04 2011
    
  • PARI
    is(n)=my(p=eulerphi(n), g=n); n--; while((g=gcd(p, g))>1, p/=g); p==1 && n \\ Charles R Greathouse IV, Mar 03 2014

A289624 a(n) = A002322(n)/A007947(A034380(n)).

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 1, 6, 4, 10, 1, 12, 6, 2, 2, 16, 6, 18, 2, 3, 10, 22, 1, 20, 12, 18, 3, 28, 2, 30, 4, 5, 16, 6, 3, 36, 18, 6, 2, 40, 3, 42, 5, 6, 22, 46, 2, 42, 20, 8, 6, 52, 18, 10, 3, 9, 28, 58, 2, 60, 30, 1, 8, 6, 5, 66, 8, 11, 6, 70, 3, 72, 36, 10, 9, 15, 6, 78, 2, 54, 40, 82, 3, 8, 42, 14, 5, 88, 6, 2, 11, 15, 46
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A002322(n) / A007947(A034380(n)) = A002322(n) / A007947(A000010(n) / A002322(n)).

A226384 Numbers k such that rad(phi(k)) = phi(rad(k)).

Original entry on oeis.org

1, 2, 3, 6, 7, 11, 12, 14, 22, 23, 24, 28, 31, 43, 44, 46, 47, 48, 56, 59, 62, 67, 71, 79, 83, 86, 88, 92, 94, 96, 103, 107, 112, 118, 124, 131, 134, 139, 142, 158, 166, 167, 172, 176, 179, 184, 188, 191, 192, 206, 211, 214, 223, 224, 227, 236, 239, 248, 262
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A080400(k) = A173557(k). - Amiram Eldar, Apr 09 2020

Crossrefs

Programs

  • Maple
    with(numtheory):
    rad:= n-> mul(i, i=factorset(n)):
    a:= proc(n) option remember; local k; for k from 1+a(n-1)
          while phi(rad(k))<>rad(phi(k)) do od; k
        end: a(0):=0:
    seq(a(n), n=1..80);  # Alois P. Heinz, Jun 07 2013
  • Mathematica
    rad[n_] := Product[fa[n][[i, 1]], {i,
         Length[fa[n]]}]; fa = FactorInteger;
          Select[Range[500], rad[EulerPhi[#]] == EulerPhi[rad[#]] &]
  • PARI
    is(n)=my(f=factor(n)); lcm(factor(eulerphi(f))[,1])==prod(i=1,#f~, f[i,1]-1) \\ Charles R Greathouse IV, Nov 13 2013
Showing 1-5 of 5 results.